-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathndarray.zig
610 lines (552 loc) · 19.5 KB
/
ndarray.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// SPDX-License-Identifier: Apache-2.0
const std = @import("std");
const Allocator = std.mem.Allocator;
pub const NDError = error{
BufferTooSmall,
InvalidPick,
MissingAllocator,
OutOfBounds,
Unsupported,
};
pub const Order = enum {
Stride,
Major,
Minor,
};
pub const IterOpts = struct {
order: Order = .Major,
};
pub fn NDArray(comptime N: usize, comptime CTYPE: type) type {
return struct {
allocator: ?*const Allocator,
data: []T,
len: usize,
offset: isize,
shape: [N]u32,
stride: [N]isize,
order: [N]u8,
pub const T = CTYPE;
pub const dim: u32 = N;
const Self = @This();
const PositionIterator = struct {
parent: *const Self,
order: [N]u8,
pos: [N]u32 = [_]u32{0} ** N,
done: bool = false,
pub fn init(parent: *const Self, order: Order) @This() {
var iter = @This(){
.parent = parent,
.order = undefined,
};
switch (order) {
.Major => {
for (iter.order, 0..) |_, i| iter.order[i] = @as(u8, @intCast(N - 1 - i));
},
.Minor => {
for (iter.order, 0..) |_, i| iter.order[i] = @as(u8, @intCast(i));
},
.Stride => {
iter.order = parent.order;
},
}
return iter;
}
pub fn next(self: *@This()) ?[N]u32 {
if (self.done) return null;
const res: [N]u32 = self.pos;
const lastUpdate = for (self.order, 0..) |o, i| {
self.pos[o] = (self.pos[o] + 1) % self.parent.shape[o];
if (self.pos[o] != 0) break i;
} else N;
if (lastUpdate == N) self.done = true;
return res;
}
};
const IndexIterator = struct {
pos: PositionIterator,
pub fn next(self: *@This()) ?usize {
return if (self.pos.next()) |i| self.pos.parent.index(i) else null;
}
};
const ValueIterator = struct {
pos: PositionIterator,
pub fn next(self: *@This()) ?T {
return if (self.pos.next()) |i| self.pos.parent.at(i) else null;
}
};
pub fn init(opts: struct {
allocator: ?*const Allocator = null,
data: ?[]T = null,
offset: isize = 0,
shape: [N]u32,
stride: ?[N]isize = null,
}) !Self {
var self = Self{
.allocator = opts.allocator,
.data = undefined,
.len = Self.length(opts.shape),
.offset = opts.offset,
.shape = opts.shape,
.stride = if (opts.stride) |stride| stride else Self.shapeToStride(opts.shape),
.order = undefined,
};
self.order = Self.strideOrder(self.stride);
if (opts.data) |data| {
if (data.len >= self.len) {
self.data = data;
} else {
return NDError.BufferTooSmall;
}
} else {
if (opts.allocator) |allocator| {
self.data = try allocator.alloc(T, self.len);
@memset(self.data, 0);
} else {
return NDError.MissingAllocator;
}
}
return self;
}
pub fn free(self: *Self) void {
if (self.allocator) |allocator| {
allocator.free(self.data);
}
}
pub inline fn index(self: *const Self, pos: [N]u32) usize {
var idx = self.offset;
comptime var i = 0;
inline while (i < N) {
idx += self.stride[i] * pos[i];
i += 1;
}
return @as(usize, @intCast(idx));
}
pub fn positions(self: *const Self, opts: IterOpts) PositionIterator {
return PositionIterator.init(self, opts.order);
}
pub fn indices(self: *const Self, opts: IterOpts) IndexIterator {
return IndexIterator{ .pos = self.positions(opts) };
}
pub fn values(self: *const Self, opts: IterOpts) ValueIterator {
return ValueIterator{ .pos = self.positions(opts) };
}
pub fn at(self: *const Self, pos: [N]u32) T {
return self.data[self.index(pos)];
}
pub fn setAt(self: *const Self, pos: [N]u32, val: T) void {
self.data[self.index(pos)] = val;
}
pub fn fill(self: *const Self, val: T) void {
var iter = self.indices(.{});
while (true) {
if (iter.next()) |i| {
self.data[i] = val;
} else break;
}
}
pub fn sum(self: *const Self) T {
const info = @typeInfo(T);
if (!(info == .Int or info == .Float)) @compileError("only supported for int/float types");
var acc: T = 0;
var iter = self.values(.{});
while (true) {
if (iter.next()) |val| {
acc += val;
} else break;
}
return acc;
}
pub fn sumAxis(self: *const Self, axis: ?u32) !NDArray(N - 1, T) {
const K = N - 1;
var newShape: [K]u32 = undefined;
var j: usize = 0;
for (self.shape, 0..) |s, i| {
if (i != axis) {
newShape[j] = s;
j += 1;
}
}
const acc = try NDArray(K, T).init(.{
.shape = newShape,
.allocator = self.allocator,
});
return acc;
}
pub fn toOwnedSlice(self: *const Self, opts: struct {
data: ?[]T = null,
allocator: ?*const Allocator = null,
order: Order = .Major,
}) ![]T {
var dest: []T = undefined;
if (opts.data) |data| {
if (data.len < self.len) return NDError.BufferTooSmall;
dest = data;
} else if (opts.allocator) |allocator| {
dest = try allocator.alloc(T, self.len);
} else return NDError.MissingAllocator;
var d: usize = 0;
var iter = self.values(.{ .order = opts.order });
while (true) {
if (iter.next()) |val| {
dest[d] = val;
d += 1;
} else break;
}
return dest;
}
// pub fn dot(self: *const Self, other: *const NDArray(type, T)) bool {}
pub fn eq(self: *const Self, other: *const Self) bool {
if (!std.mem.eql(u32, self.shape[0..], other.shape[0..])) return false;
var ia = self.values(.{});
var ib = other.values(.{});
while (true) {
if (ia.next()) |va| {
if (ib.next()) |vb| {
if (va != vb) return false;
} else return false;
} else break;
}
return true;
}
pub fn eqApprox(self: *const Self, other: *const Self, tolerance: T) bool {
if (@typeInfo(T) != .Float) @compileError("only supported for float types");
if (!std.mem.eql(u32, self.shape[0..], other.shape[0..])) return false;
var ia = self.values(.{});
var ib = other.values(.{});
while (true) {
if (ia.next()) |va| {
if (ib.next()) |vb| {
if (!std.math.approxEqRel(T, va, vb, tolerance)) return false;
} else return false;
} else break;
}
return true;
}
pub fn hi(self: *const Self, pos: [N]?u32) !Self {
var newShape: [N]u32 = undefined;
for (pos, 0..) |p, i| {
if (p) |q| {
if (q < 1 or q > self.shape[i]) return NDError.OutOfBounds;
newShape[i] = q;
} else {
newShape[i] = self.shape[i];
}
}
return Self.init(.{
.allocator = self.allocator,
.data = self.data,
.offset = self.offset,
.shape = newShape,
.stride = self.stride,
});
}
pub fn lo(self: *const Self, pos: [N]?u32) !Self {
var off = self.offset;
var newShape: [N]u32 = undefined;
for (pos, 0..) |p, i| {
if (p) |q| {
if (q >= self.shape[i]) return NDError.OutOfBounds;
off += self.stride[i] * q;
newShape[i] = self.shape[i] - q;
} else {
newShape[i] = self.shape[i];
}
}
return Self.init(.{
.allocator = self.allocator,
.data = self.data,
.offset = off,
.shape = newShape,
.stride = self.stride,
});
}
/// Picks one or more axes from given ndarray and returns new a ndarray
/// with / reduced dimensions. The new array is using the same data buffer.
///
/// @param M - the number of axes to pick.
/// @param axes - partial coordinates defining the picked axes.
/// A `null` coord means the respective axis remains unchanged.
/// The array MUST contain exactly `M` non-null values.
pub fn pick(self: *const Self, comptime M: usize, axes: [N]?u32) !NDArray(N - M, T) {
if (M < 1) @compileError("require at least 1 dimension");
if (M >= N) @compileError("too many dimensions");
const K = N - M;
var newDim: usize = 0;
for (axes) |a| {
if (a == null) newDim += 1;
}
if (newDim != K) return NDError.InvalidPick;
var newShape: [K]u32 = undefined;
var newStride: [K]isize = undefined;
var off = self.offset;
var j: usize = 0;
for (axes, 0..) |axis, i| {
if (axis) |a| {
if (a >= self.shape[i]) return NDError.OutOfBounds;
off += self.stride[i] * a;
} else {
newShape[j] = self.shape[i];
newStride[j] = self.stride[i];
j += 1;
}
}
return NDArray(K, T).init(.{
.allocator = self.allocator,
.data = self.data,
.offset = off,
.shape = newShape,
.stride = newStride,
});
}
pub fn reshape(self: *const Self, comptime M: usize, opts: struct {
shape: [M]u32,
stride: ?[M]isize = null,
offset: ?isize = null,
}) !NDArray(M, T) {
const A = NDArray(M, T);
if (A.length(opts.shape) > self.data.len) return NDError.BufferTooSmall;
return try A.init(.{
.allocator = self.allocator,
.data = self.data,
.offset = if (opts.offset) |x| x else self.offset,
.shape = opts.shape,
.stride = opts.stride,
});
}
pub fn step(self: *const Self, steps: [N]?i32) !Self {
var newShape: [N]u32 = undefined;
var newStride: [N]isize = undefined;
var off = self.offset;
for (steps, 0..) |ss, i| {
if (ss) |s| {
var t = s;
if (s < 0) {
off += self.stride[i] * (self.shape[i] - 1);
t = -s;
}
newShape[i] = @divTrunc(self.shape[i], @as(u32, @intCast(t)));
newStride[i] = self.stride[i] * s;
} else {
newShape[i] = self.shape[i];
newStride[i] = self.stride[i];
}
}
return Self.init(.{
.allocator = self.allocator,
.data = self.data,
.offset = off,
.shape = newShape,
.stride = newStride,
});
}
pub fn transpose(self: *const Self, order: [N]u32) !Self {
var newShape: [N]u32 = undefined;
var newStride: [N]isize = undefined;
for (order, 0..) |o, i| {
if (o >= N) return NDError.OutOfBounds;
newShape[i] = self.shape[o];
newStride[i] = self.stride[o];
}
return Self.init(.{
.allocator = self.allocator,
.data = self.data,
.offset = self.offset,
.shape = newShape,
.stride = newStride,
});
}
pub fn print(self: *const Self) void {
std.debug.print("NDArray({},{})[shape={d} stride={d} offset={d} len={d}]\n", .{
N,
T,
self.shape,
self.stride,
self.offset,
self.len,
});
}
fn length(shape: [N]u32) usize {
var len: usize = 1;
for (shape) |s| len *= s;
return len;
}
fn shapeToStride(shape: [N]u32) [N]isize {
var stride = [_]isize{0} ** N;
var s: isize = 1;
for (shape, 0..) |_, i| {
const j = N - 1 - i;
stride[j] = s;
s *= @as(isize, @intCast(shape[j]));
}
return stride;
}
fn strideOrder(stride: [N]isize) [N]u8 {
const Item = struct { s: isize, i: usize };
var res: [N]u8 = undefined;
var indexed: [N]Item = undefined;
for (indexed, 0..) |_, i| {
indexed[i] = .{ .s = stride[i], .i = i };
}
const cmp = struct {
fn inner(_: void, a: Item, b: Item) bool {
return iabs(a.s) < iabs(b.s);
}
};
std.sort.insertion(Item, indexed[0..], {}, cmp.inner);
for (indexed, 0..) |x, i| {
res[i] = @as(u8, @intCast(x.i));
}
return res;
}
};
}
fn iabs(x: isize) isize {
return if (x >= 0) x else -x;
}
pub fn range(n: u32, comptime T: type, allocator: *const Allocator) !NDArray(1, T) {
const info = @typeInfo(T);
if (!(info == .Int or info == .Float)) @compileError("only int or float types supported");
var res = try NDArray(1, T).init(.{
.allocator = allocator,
.shape = .{n},
});
var iter = res.indices(.{});
var j: T = 0;
while (true) {
if (iter.next()) |i| {
res.data[i] = j;
j += 1;
} else break;
}
return res;
}
pub fn ones(comptime N: usize, comptime T: type, shape: [N]u32, allocator: *const Allocator) NDArray(N, T) {
var res = try NDArray(N, T).init(.{
.allocator = allocator,
.shape = shape,
});
res.fill(1);
return res;
}
const __allocator = &std.testing.allocator;
test "nd3 f32 init" {
var a = try NDArray(3, f32).init(.{
.shape = .{ 4, 4, 4 },
.stride = .{ 1, 4, 16 },
.allocator = __allocator,
});
std.debug.print("a.order {d}\n", .{a.order});
defer a.free();
try std.testing.expectEqual(f32, @TypeOf(a).T);
try std.testing.expectEqual(@as(u32, 3), @TypeOf(a).dim);
try std.testing.expectEqual(@as(usize, 4 * 4 * 4), a.len);
try std.testing.expectEqual(@as(usize, 16 + 4 + 1), a.index(.{ 1, 1, 1 }));
var bdata: [64]f32 = [_]f32{0} ** 64;
var b = try NDArray(3, f32).init(.{
.data = bdata[0..],
// .data = try std.heap.page_allocator.alloc(f32, 65),
// .allocator = std.heap.page_allocator,
.shape = .{ 4, 4, 4 },
});
std.debug.print("b.order {d}\n", .{b.order});
try std.testing.expectEqual([_]isize{ 16, 4, 1 }, b.stride);
b.setAt(.{ 0, 1, 1 }, 42);
try std.testing.expectEqual(@as(f32, 42), b.at(.{ 0, 1, 1 }));
defer b.free();
var p = try b.toOwnedSlice(.{ .allocator = __allocator });
std.debug.print("{d}\n", .{p});
__allocator.free(p);
b.stride = .{ 1, 4, 16 };
p = try b.toOwnedSlice(.{ .allocator = __allocator });
std.debug.print("{d}\n", .{p});
__allocator.free(p);
}
test "nd3 f32 iter" {
var a = try NDArray(3, f32).init(.{
.shape = .{ 4, 4, 4 },
.stride = .{ 1, 4, 16 },
.allocator = __allocator,
});
defer a.free();
std.debug.print("stride {d}, order {d}\n", .{ a.stride, a.order });
a.setAt(.{ 0, 1, 1 }, 23);
a.setAt(.{ 1, 1, 1 }, 42);
try std.testing.expect(a.eqApprox(&a, 1e-9));
const p = try a.toOwnedSlice(.{ .allocator = __allocator });
defer __allocator.free(p);
std.debug.print("{d}\n", .{p});
var i = a.values(.{});
while (true) {
if (i.next()) |pos| {
std.debug.print("next: {d}\n", .{pos});
} else break;
}
}
test "1d reshape" {
var a = try range(16, u32, __allocator);
defer a.free();
var b = try a.reshape(4, .{ .shape = .{ 2, 2, 2, 2 } });
b = try b.transpose(.{ 1, 0, 3, 2 });
std.debug.print("{d}", .{b.stride});
var i = b.values(.{ .order = .Major });
while (true) {
if (i.next()) |pos| {
std.debug.print("next: {d}\n", .{pos});
} else break;
}
}
test "2d trunc" {
var a = try range(16, u32, __allocator);
defer a.free();
var b = try a.reshape(2, .{ .shape = .{ 4, 4 } });
b = try b.lo(.{ 1, 2 });
b = try b.hi(.{ 2, 2 });
std.debug.print("{d}", .{b.shape});
const c = try b.toOwnedSlice(.{ .allocator = __allocator });
defer __allocator.free(c);
std.debug.print("{d}\n", .{c});
}
test "3d -> 2d pick" {
var a = try range(4 * 4 * 4, u32, __allocator);
defer a.free();
var b = try a.reshape(3, .{ .shape = .{ 4, 4, 4 } });
var c = try b.pick(2, .{ 1, null, 1 });
c.print();
const d = try c.toOwnedSlice(.{ .allocator = __allocator });
defer __allocator.free(d);
std.debug.print("{d}\n", .{d});
}
test "3d step" {
var a = try range(4 * 4 * 4, u32, __allocator);
defer a.free();
var b = try NDArray(3, u32).init(.{
.data = a.data,
.shape = .{ 4, 4, 4 },
// .stride = .{ 1, 4, 16 },
// .allocator = &std.heap.page_allocator,
});
std.debug.print("\n", .{});
b.print();
// var b2 = try a2.reshape(3, .{ .shape = .{ 4, 2, 4 } });
var c = try b.step(.{ 2, -2, -1 });
c.print();
const d = try c.toOwnedSlice(.{ .allocator = __allocator });
defer __allocator.free(d);
std.debug.print("{d}\n", .{d});
}
test "3d axis iter" {
var a = try range(4 * 4 * 4, u32, __allocator);
defer a.free();
var b = try NDArray(3, u32).init(.{
.data = a.data,
.shape = .{ 4, 4, 4 },
});
// var b = try a.reshape(3, .{ .shape = .{ 4, 4, 4 } });
b.print();
var c = try b.pick(1, .{ 0, null, null });
c.print();
std.debug.print("sum {d}\n", .{c.sum()});
const d = try c.toOwnedSlice(.{ .allocator = __allocator });
defer __allocator.free(d);
std.debug.print("{d}\n", .{d});
}