-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
21 lines (20 loc) · 940 Bytes
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import torch
import torch.nn as nn
class DnCNN(nn.Module):
def __init__(self, channels, num_of_layers=17):
super(DnCNN, self).__init__()
kernel_size = 3
padding = 1
features = 64
layers = []
layers.append(nn.Conv2d(in_channels=channels, out_channels=features, kernel_size=kernel_size, padding=padding, bias=False))
layers.append(nn.ReLU(inplace=True))
for _ in range(num_of_layers-2):
layers.append(nn.Conv2d(in_channels=features, out_channels=features, kernel_size=kernel_size, padding=padding, bias=False))
layers.append(nn.BatchNorm2d(features))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(in_channels=features, out_channels=channels, kernel_size=kernel_size, padding=padding, bias=False))
self.dncnn = nn.Sequential(*layers)
def forward(self, x):
out = self.dncnn(x)
return out