forked from Giphy/celeb-detection-oss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
130 lines (102 loc) · 4.44 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import hashlib
import logging
import sys
import moviepy.editor as mov_editor
import traceback
import numpy as np
from flask import Flask, render_template, request, send_from_directory
from dotenv import load_dotenv
from skimage import io
from model_training.helpers.labels import Labels
from model_training.helpers.face_recognizer import FaceRecognizer
from model_training.utils import ensure_dir, evenly_spaced_sampling, ACCEPTABLE_ERRORS, preprocess_image
from model_training.preprocessors.face_detection.face_detector import FaceDetector
load_dotenv('.env')
app = Flask(__name__)
def exception_handler(_):
app.logger.debug(traceback.format_exc())
return render_template('500.html')
def render_predictions(face_images, faces_predictions, filename):
if len(faces_predictions) == 0:
return render_template('empty_result.html', image_name=filename)
crops_names = []
for i, image in enumerate(face_images):
crop_name = f'{i}_{filename}'
io.imsave(os.path.join(TMP_DIR, crop_name), image)
crops_names.append(crop_name)
return render_template('result.html', image_name=filename,
crops=crops_names, faces_predictions=faces_predictions)
def load_image(path, url):
try:
image = io.imread(url)
if len(image.shape) == 2:
image = np.stack((image,) * 3, axis=-1)
image_hash = hashlib.md5(image.tostring()).hexdigest()
base_name = f'{image_hash}.jpg'
filename = os.path.join(path, base_name)
io.imsave(filename, image)
app.logger.info(f'Saved {url} to {filename}')
return base_name, image
except ACCEPTABLE_ERRORS as ex:
app.logger.warn(f'Cannot download {url} error: {ex}')
def load_gif(path, url):
try:
gif = mov_editor.VideoFileClip(url)
gif_hash = hashlib.md5(gif.filename.encode('utf-8')).hexdigest()
base_name = f'{gif_hash}.gif'
filename = os.path.join(path, base_name)
gif.write_gif(filename)
app.logger.info(f'Saved {url} to {filename}')
return base_name, gif
except ACCEPTABLE_ERRORS as ex:
app.logger.warn(f'Cannot download {url} error: {ex}')
def process_image(image_url):
filename, image = load_image(TMP_DIR, image_url)
face_images = face_detector.perform_single(image)
face_images = [preprocess_image(image, image_size) for image, _ in face_images]
faces_predictions = face_recognizer.perform(face_images)
return render_predictions(face_images, faces_predictions, filename)
def process_gif(gif_url):
filename, gif = load_gif(TMP_DIR, gif_url)
selected_frames = evenly_spaced_sampling(list(gif.iter_frames()), gif_frames)
face_images_by_frames = face_detector.perform_bulk(selected_frames, range(len(selected_frames)))
face_images = []
for frame_faces in face_images_by_frames.values():
face_images.extend([preprocess_image(image, image_size) for image, _ in frame_faces])
faces_predictions = face_recognizer.perform(face_images)
return render_predictions(face_images, faces_predictions, filename)
@app.route('/', methods=['GET'])
def index():
return render_template('index.html', available_labels=model_labels.labels_list)
@app.route('/img/<path>')
def img(path):
return send_from_directory(TMP_DIR, path)
@app.route('/process', methods=['POST'])
def process():
target_url = request.form['image_url']
if any(target_url.endswith(e) for e in ('.gif', '.mp4')):
return process_gif(target_url)
return process_image(target_url)
if __name__ == '__main__':
model_labels = Labels(resources_path=os.getenv('APP_DATA_DIR'))
face_detector = FaceDetector(
os.getenv('APP_DATA_DIR'),
margin=float(os.getenv('APP_FACE_MARGIN', 0.2)),
use_cuda=os.getenv('APP_USE_CUDA') == "true"
)
face_recognizer = FaceRecognizer(
labels=model_labels,
resources_path=os.getenv('APP_DATA_DIR'),
use_cuda=os.getenv('USE_CUDA') == "true"
)
TMP_DIR = os.getenv('APP_TMP_DIR', './tmp')
ensure_dir(TMP_DIR)
image_size = int(os.getenv('APP_FACE_SIZE', 224))
gif_frames = int(os.getenv('APP_GIF_FRAMES', 20))
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s'))
app.logger.addHandler(handler)
app.logger.setLevel(logging.DEBUG)
app.register_error_handler(Exception, exception_handler)
app.run(port=int(os.getenv('APP_PORT', 5000)))