diff --git a/dist/gl-matrix.js b/dist/gl-matrix.js index 817292f2..39ea90c4 100644 --- a/dist/gl-matrix.js +++ b/dist/gl-matrix.js @@ -74,19 +74,34 @@ return /******/ (function(modules) { // webpackBootstrap /******/ // define getter function for harmony exports /******/ __webpack_require__.d = function(exports, name, getter) { /******/ if(!__webpack_require__.o(exports, name)) { -/******/ Object.defineProperty(exports, name, { -/******/ configurable: false, -/******/ enumerable: true, -/******/ get: getter -/******/ }); +/******/ Object.defineProperty(exports, name, { enumerable: true, get: getter }); /******/ } /******/ }; /******/ /******/ // define __esModule on exports /******/ __webpack_require__.r = function(exports) { +/******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) { +/******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' }); +/******/ } /******/ Object.defineProperty(exports, '__esModule', { value: true }); /******/ }; /******/ +/******/ // create a fake namespace object +/******/ // mode & 1: value is a module id, require it +/******/ // mode & 2: merge all properties of value into the ns +/******/ // mode & 4: return value when already ns object +/******/ // mode & 8|1: behave like require +/******/ __webpack_require__.t = function(value, mode) { +/******/ if(mode & 1) value = __webpack_require__(value); +/******/ if(mode & 8) return value; +/******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value; +/******/ var ns = Object.create(null); +/******/ __webpack_require__.r(ns); +/******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value }); +/******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key)); +/******/ return ns; +/******/ }; +/******/ /******/ // getDefaultExport function for compatibility with non-harmony modules /******/ __webpack_require__.n = function(module) { /******/ var getter = module && module.__esModule ? @@ -129,7 +144,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.setMatrixArrayType = setMatrixArrayType;\nexports.toRadian = toRadian;\nexports.equals = equals;\n/**\n * Common utilities\n * @module glMatrix\n */\n\n// Configuration Constants\nvar EPSILON = exports.EPSILON = 0.000001;\nvar ARRAY_TYPE = exports.ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;\nvar RANDOM = exports.RANDOM = Math.random;\n\n/**\n * Sets the type of array used when creating new vectors and matrices\n *\n * @param {Type} type Array type, such as Float32Array or Array\n */\nfunction setMatrixArrayType(type) {\n exports.ARRAY_TYPE = ARRAY_TYPE = type;\n}\n\nvar degree = Math.PI / 180;\n\n/**\n * Convert Degree To Radian\n *\n * @param {Number} a Angle in Degrees\n */\nfunction toRadian(a) {\n return a * degree;\n}\n\n/**\n * Tests whether or not the arguments have approximately the same value, within an absolute\n * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less\n * than or equal to 1.0, and a relative tolerance is used for larger values)\n *\n * @param {Number} a The first number to test.\n * @param {Number} b The second number to test.\n * @returns {Boolean} True if the numbers are approximately equal, false otherwise.\n */\nfunction equals(a, b) {\n return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));\n}\n\n//# sourceURL=webpack:///./src/gl-matrix/common.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.setMatrixArrayType = setMatrixArrayType;\nexports.toRadian = toRadian;\nexports.equals = equals;\n/**\r\n * Common utilities\r\n * @module glMatrix\r\n */\n\n// Configuration Constants\nvar EPSILON = exports.EPSILON = 0.000001;\nvar ARRAY_TYPE = exports.ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;\nvar RANDOM = exports.RANDOM = Math.random;\n\n/**\r\n * Sets the type of array used when creating new vectors and matrices\r\n *\r\n * @param {Type} type Array type, such as Float32Array or Array\r\n */\nfunction setMatrixArrayType(type) {\n exports.ARRAY_TYPE = ARRAY_TYPE = type;\n}\n\nvar degree = Math.PI / 180;\n\n/**\r\n * Convert Degree To Radian\r\n *\r\n * @param {Number} a Angle in Degrees\r\n */\nfunction toRadian(a) {\n return a * degree;\n}\n\n/**\r\n * Tests whether or not the arguments have approximately the same value, within an absolute\r\n * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less\r\n * than or equal to 1.0, and a relative tolerance is used for larger values)\r\n *\r\n * @param {Number} a The first number to test.\r\n * @param {Number} b The second number to test.\r\n * @returns {Boolean} True if the numbers are approximately equal, false otherwise.\r\n */\nfunction equals(a, b) {\n return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));\n}\n\n//# sourceURL=webpack:///./src/gl-matrix/common.js?"); /***/ }), @@ -141,7 +156,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.str = str;\nexports.frob = frob;\nexports.LDU = LDU;\nexports.add = add;\nexports.subtract = subtract;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 2x2 Matrix\n * @module mat2\n */\n\n/**\n * Creates a new identity mat2\n *\n * @returns {mat2} a new 2x2 matrix\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\n * Creates a new mat2 initialized with values from an existing matrix\n *\n * @param {mat2} a matrix to clone\n * @returns {mat2} a new 2x2 matrix\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\n * Copy the values from one mat2 to another\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\n * Set a mat2 to the identity matrix\n *\n * @param {mat2} out the receiving matrix\n * @returns {mat2} out\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\n * Create a new mat2 with the given values\n *\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\n * @returns {mat2} out A new 2x2 matrix\n */\nfunction fromValues(m00, m01, m10, m11) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n\n/**\n * Set the components of a mat2 to the given values\n *\n * @param {mat2} out the receiving matrix\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\n * @returns {mat2} out\n */\nfunction set(out, m00, m01, m10, m11) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n\n/**\n * Transpose the values of a mat2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache\n // some values\n if (out === a) {\n var a1 = a[1];\n out[1] = a[2];\n out[2] = a1;\n } else {\n out[0] = a[0];\n out[1] = a[2];\n out[2] = a[1];\n out[3] = a[3];\n }\n\n return out;\n}\n\n/**\n * Inverts a mat2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction invert(out, a) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n\n // Calculate the determinant\n var det = a0 * a3 - a2 * a1;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = a3 * det;\n out[1] = -a1 * det;\n out[2] = -a2 * det;\n out[3] = a0 * det;\n\n return out;\n}\n\n/**\n * Calculates the adjugate of a mat2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the source matrix\n * @returns {mat2} out\n */\nfunction adjoint(out, a) {\n // Caching this value is nessecary if out == a\n var a0 = a[0];\n out[0] = a[3];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a0;\n\n return out;\n}\n\n/**\n * Calculates the determinant of a mat2\n *\n * @param {mat2} a the source matrix\n * @returns {Number} determinant of a\n */\nfunction determinant(a) {\n return a[0] * a[3] - a[2] * a[1];\n}\n\n/**\n * Multiplies two mat2's\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @returns {mat2} out\n */\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n return out;\n}\n\n/**\n * Rotates a mat2 by the given angle\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2} out\n */\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n return out;\n}\n\n/**\n * Scales the mat2 by the dimensions in the given vec2\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the matrix to rotate\n * @param {vec2} v the vec2 to scale the matrix by\n * @returns {mat2} out\n **/\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n return out;\n}\n\n/**\n * Creates a matrix from a given angle\n * This is equivalent to (but much faster than):\n *\n * mat2.identity(dest);\n * mat2.rotate(dest, dest, rad);\n *\n * @param {mat2} out mat2 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2} out\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n return out;\n}\n\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat2.identity(dest);\n * mat2.scale(dest, dest, vec);\n *\n * @param {mat2} out mat2 receiving operation result\n * @param {vec2} v Scaling vector\n * @returns {mat2} out\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n return out;\n}\n\n/**\n * Returns a string representation of a mat2\n *\n * @param {mat2} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\nfunction str(a) {\n return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';\n}\n\n/**\n * Returns Frobenius norm of a mat2\n *\n * @param {mat2} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2));\n}\n\n/**\n * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix\n * @param {mat2} L the lower triangular matrix\n * @param {mat2} D the diagonal matrix\n * @param {mat2} U the upper triangular matrix\n * @param {mat2} a the input matrix to factorize\n */\n\nfunction LDU(L, D, U, a) {\n L[2] = a[2] / a[0];\n U[0] = a[0];\n U[1] = a[1];\n U[3] = a[3] - L[2] * U[1];\n return [L, D, U];\n}\n\n/**\n * Adds two mat2's\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @returns {mat2} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n return out;\n}\n\n/**\n * Subtracts matrix b from matrix a\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @returns {mat2} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n return out;\n}\n\n/**\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\n *\n * @param {mat2} a The first matrix.\n * @param {mat2} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];\n}\n\n/**\n * Returns whether or not the matrices have approximately the same elements in the same position.\n *\n * @param {mat2} a The first matrix.\n * @param {mat2} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));\n}\n\n/**\n * Multiply each element of the matrix by a scalar.\n *\n * @param {mat2} out the receiving matrix\n * @param {mat2} a the matrix to scale\n * @param {Number} b amount to scale the matrix's elements by\n * @returns {mat2} out\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n return out;\n}\n\n/**\n * Adds two mat2's after multiplying each element of the second operand by a scalar value.\n *\n * @param {mat2} out the receiving vector\n * @param {mat2} a the first operand\n * @param {mat2} b the second operand\n * @param {Number} scale the amount to scale b's elements by before adding\n * @returns {mat2} out\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n return out;\n}\n\n/**\n * Alias for {@link mat2.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link mat2.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat2.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.str = str;\nexports.frob = frob;\nexports.LDU = LDU;\nexports.add = add;\nexports.subtract = subtract;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * 2x2 Matrix\r\n * @module mat2\r\n */\n\n/**\r\n * Creates a new identity mat2\r\n *\r\n * @returns {mat2} a new 2x2 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\r\n * Creates a new mat2 initialized with values from an existing matrix\r\n *\r\n * @param {mat2} a matrix to clone\r\n * @returns {mat2} a new 2x2 matrix\r\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\r\n * Copy the values from one mat2 to another\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the source matrix\r\n * @returns {mat2} out\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\r\n * Set a mat2 to the identity matrix\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @returns {mat2} out\r\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\r\n * Create a new mat2 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\r\n * @returns {mat2} out A new 2x2 matrix\r\n */\nfunction fromValues(m00, m01, m10, m11) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n\n/**\r\n * Set the components of a mat2 to the given values\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\r\n * @returns {mat2} out\r\n */\nfunction set(out, m00, m01, m10, m11) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n\n/**\r\n * Transpose the values of a mat2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the source matrix\r\n * @returns {mat2} out\r\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache\n // some values\n if (out === a) {\n var a1 = a[1];\n out[1] = a[2];\n out[2] = a1;\n } else {\n out[0] = a[0];\n out[1] = a[2];\n out[2] = a[1];\n out[3] = a[3];\n }\n\n return out;\n}\n\n/**\r\n * Inverts a mat2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the source matrix\r\n * @returns {mat2} out\r\n */\nfunction invert(out, a) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n\n // Calculate the determinant\n var det = a0 * a3 - a2 * a1;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = a3 * det;\n out[1] = -a1 * det;\n out[2] = -a2 * det;\n out[3] = a0 * det;\n\n return out;\n}\n\n/**\r\n * Calculates the adjugate of a mat2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the source matrix\r\n * @returns {mat2} out\r\n */\nfunction adjoint(out, a) {\n // Caching this value is nessecary if out == a\n var a0 = a[0];\n out[0] = a[3];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a0;\n\n return out;\n}\n\n/**\r\n * Calculates the determinant of a mat2\r\n *\r\n * @param {mat2} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\nfunction determinant(a) {\n return a[0] * a[3] - a[2] * a[1];\n}\n\n/**\r\n * Multiplies two mat2's\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the first operand\r\n * @param {mat2} b the second operand\r\n * @returns {mat2} out\r\n */\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n return out;\n}\n\n/**\r\n * Rotates a mat2 by the given angle\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2} out\r\n */\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n return out;\n}\n\n/**\r\n * Scales the mat2 by the dimensions in the given vec2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the matrix to rotate\r\n * @param {vec2} v the vec2 to scale the matrix by\r\n * @returns {mat2} out\r\n **/\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n return out;\n}\n\n/**\r\n * Creates a matrix from a given angle\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2.identity(dest);\r\n * mat2.rotate(dest, dest, rad);\r\n *\r\n * @param {mat2} out mat2 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2} out\r\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n return out;\n}\n\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2.identity(dest);\r\n * mat2.scale(dest, dest, vec);\r\n *\r\n * @param {mat2} out mat2 receiving operation result\r\n * @param {vec2} v Scaling vector\r\n * @returns {mat2} out\r\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n return out;\n}\n\n/**\r\n * Returns a string representation of a mat2\r\n *\r\n * @param {mat2} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\nfunction str(a) {\n return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';\n}\n\n/**\r\n * Returns Frobenius norm of a mat2\r\n *\r\n * @param {mat2} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2));\n}\n\n/**\r\n * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix\r\n * @param {mat2} L the lower triangular matrix\r\n * @param {mat2} D the diagonal matrix\r\n * @param {mat2} U the upper triangular matrix\r\n * @param {mat2} a the input matrix to factorize\r\n */\n\nfunction LDU(L, D, U, a) {\n L[2] = a[2] / a[0];\n U[0] = a[0];\n U[1] = a[1];\n U[3] = a[3] - L[2] * U[1];\n return [L, D, U];\n}\n\n/**\r\n * Adds two mat2's\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the first operand\r\n * @param {mat2} b the second operand\r\n * @returns {mat2} out\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n return out;\n}\n\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the first operand\r\n * @param {mat2} b the second operand\r\n * @returns {mat2} out\r\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n return out;\n}\n\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {mat2} a The first matrix.\r\n * @param {mat2} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];\n}\n\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {mat2} a The first matrix.\r\n * @param {mat2} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));\n}\n\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {mat2} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat2} out\r\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n return out;\n}\n\n/**\r\n * Adds two mat2's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat2} out the receiving vector\r\n * @param {mat2} a the first operand\r\n * @param {mat2} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat2} out\r\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n return out;\n}\n\n/**\r\n * Alias for {@link mat2.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Alias for {@link mat2.subtract}\r\n * @function\r\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat2.js?"); /***/ }), @@ -153,7 +168,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.invert = invert;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.translate = translate;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromTranslation = fromTranslation;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 2x3 Matrix\n * @module mat2d\n *\n * @description\n * A mat2d contains six elements defined as:\n *
\n * [a, c, tx,\n *  b, d, ty]\n * 
\n * This is a short form for the 3x3 matrix:\n *
\n * [a, c, tx,\n *  b, d, ty,\n *  0, 0, 1]\n * 
\n * The last row is ignored so the array is shorter and operations are faster.\n */\n\n/**\n * Creates a new identity mat2d\n *\n * @returns {mat2d} a new 2x3 matrix\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Creates a new mat2d initialized with values from an existing matrix\n *\n * @param {mat2d} a matrix to clone\n * @returns {mat2d} a new 2x3 matrix\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n\n/**\n * Copy the values from one mat2d to another\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the source matrix\n * @returns {mat2d} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n\n/**\n * Set a mat2d to the identity matrix\n *\n * @param {mat2d} out the receiving matrix\n * @returns {mat2d} out\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Create a new mat2d with the given values\n *\n * @param {Number} a Component A (index 0)\n * @param {Number} b Component B (index 1)\n * @param {Number} c Component C (index 2)\n * @param {Number} d Component D (index 3)\n * @param {Number} tx Component TX (index 4)\n * @param {Number} ty Component TY (index 5)\n * @returns {mat2d} A new mat2d\n */\nfunction fromValues(a, b, c, d, tx, ty) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n\n/**\n * Set the components of a mat2d to the given values\n *\n * @param {mat2d} out the receiving matrix\n * @param {Number} a Component A (index 0)\n * @param {Number} b Component B (index 1)\n * @param {Number} c Component C (index 2)\n * @param {Number} d Component D (index 3)\n * @param {Number} tx Component TX (index 4)\n * @param {Number} ty Component TY (index 5)\n * @returns {mat2d} out\n */\nfunction set(out, a, b, c, d, tx, ty) {\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n\n/**\n * Inverts a mat2d\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the source matrix\n * @returns {mat2d} out\n */\nfunction invert(out, a) {\n var aa = a[0],\n ab = a[1],\n ac = a[2],\n ad = a[3];\n var atx = a[4],\n aty = a[5];\n\n var det = aa * ad - ab * ac;\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = ad * det;\n out[1] = -ab * det;\n out[2] = -ac * det;\n out[3] = aa * det;\n out[4] = (ac * aty - ad * atx) * det;\n out[5] = (ab * atx - aa * aty) * det;\n return out;\n}\n\n/**\n * Calculates the determinant of a mat2d\n *\n * @param {mat2d} a the source matrix\n * @returns {Number} determinant of a\n */\nfunction determinant(a) {\n return a[0] * a[3] - a[1] * a[2];\n}\n\n/**\n * Multiplies two mat2d's\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @returns {mat2d} out\n */\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n out[4] = a0 * b4 + a2 * b5 + a4;\n out[5] = a1 * b4 + a3 * b5 + a5;\n return out;\n}\n\n/**\n * Rotates a mat2d by the given angle\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2d} out\n */\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n\n/**\n * Scales the mat2d by the dimensions in the given vec2\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to translate\n * @param {vec2} v the vec2 to scale the matrix by\n * @returns {mat2d} out\n **/\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n\n/**\n * Translates the mat2d by the dimensions in the given vec2\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to translate\n * @param {vec2} v the vec2 to translate the matrix by\n * @returns {mat2d} out\n **/\nfunction translate(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0;\n out[1] = a1;\n out[2] = a2;\n out[3] = a3;\n out[4] = a0 * v0 + a2 * v1 + a4;\n out[5] = a1 * v0 + a3 * v1 + a5;\n return out;\n}\n\n/**\n * Creates a matrix from a given angle\n * This is equivalent to (but much faster than):\n *\n * mat2d.identity(dest);\n * mat2d.rotate(dest, dest, rad);\n *\n * @param {mat2d} out mat2d receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat2d} out\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat2d.identity(dest);\n * mat2d.scale(dest, dest, vec);\n *\n * @param {mat2d} out mat2d receiving operation result\n * @param {vec2} v Scaling vector\n * @returns {mat2d} out\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\n * Creates a matrix from a vector translation\n * This is equivalent to (but much faster than):\n *\n * mat2d.identity(dest);\n * mat2d.translate(dest, dest, vec);\n *\n * @param {mat2d} out mat2d receiving operation result\n * @param {vec2} v Translation vector\n * @returns {mat2d} out\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = v[0];\n out[5] = v[1];\n return out;\n}\n\n/**\n * Returns a string representation of a mat2d\n *\n * @param {mat2d} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\nfunction str(a) {\n return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')';\n}\n\n/**\n * Returns Frobenius norm of a mat2d\n *\n * @param {mat2d} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1);\n}\n\n/**\n * Adds two mat2d's\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @returns {mat2d} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n return out;\n}\n\n/**\n * Subtracts matrix b from matrix a\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @returns {mat2d} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n return out;\n}\n\n/**\n * Multiply each element of the matrix by a scalar.\n *\n * @param {mat2d} out the receiving matrix\n * @param {mat2d} a the matrix to scale\n * @param {Number} b amount to scale the matrix's elements by\n * @returns {mat2d} out\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n return out;\n}\n\n/**\n * Adds two mat2d's after multiplying each element of the second operand by a scalar value.\n *\n * @param {mat2d} out the receiving vector\n * @param {mat2d} a the first operand\n * @param {mat2d} b the second operand\n * @param {Number} scale the amount to scale b's elements by before adding\n * @returns {mat2d} out\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n return out;\n}\n\n/**\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\n *\n * @param {mat2d} a The first matrix.\n * @param {mat2d} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];\n}\n\n/**\n * Returns whether or not the matrices have approximately the same elements in the same position.\n *\n * @param {mat2d} a The first matrix.\n * @param {mat2d} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));\n}\n\n/**\n * Alias for {@link mat2d.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link mat2d.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat2d.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.invert = invert;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.translate = translate;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromTranslation = fromTranslation;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * 2x3 Matrix\r\n * @module mat2d\r\n *\r\n * @description\r\n * A mat2d contains six elements defined as:\r\n *
\r\n * [a, c, tx,\r\n *  b, d, ty]\r\n * 
\r\n * This is a short form for the 3x3 matrix:\r\n *
\r\n * [a, c, tx,\r\n *  b, d, ty,\r\n *  0, 0, 1]\r\n * 
\r\n * The last row is ignored so the array is shorter and operations are faster.\r\n */\n\n/**\r\n * Creates a new identity mat2d\r\n *\r\n * @returns {mat2d} a new 2x3 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\r\n * Creates a new mat2d initialized with values from an existing matrix\r\n *\r\n * @param {mat2d} a matrix to clone\r\n * @returns {mat2d} a new 2x3 matrix\r\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n\n/**\r\n * Copy the values from one mat2d to another\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the source matrix\r\n * @returns {mat2d} out\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n\n/**\r\n * Set a mat2d to the identity matrix\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @returns {mat2d} out\r\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\r\n * Create a new mat2d with the given values\r\n *\r\n * @param {Number} a Component A (index 0)\r\n * @param {Number} b Component B (index 1)\r\n * @param {Number} c Component C (index 2)\r\n * @param {Number} d Component D (index 3)\r\n * @param {Number} tx Component TX (index 4)\r\n * @param {Number} ty Component TY (index 5)\r\n * @returns {mat2d} A new mat2d\r\n */\nfunction fromValues(a, b, c, d, tx, ty) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n\n/**\r\n * Set the components of a mat2d to the given values\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {Number} a Component A (index 0)\r\n * @param {Number} b Component B (index 1)\r\n * @param {Number} c Component C (index 2)\r\n * @param {Number} d Component D (index 3)\r\n * @param {Number} tx Component TX (index 4)\r\n * @param {Number} ty Component TY (index 5)\r\n * @returns {mat2d} out\r\n */\nfunction set(out, a, b, c, d, tx, ty) {\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n\n/**\r\n * Inverts a mat2d\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the source matrix\r\n * @returns {mat2d} out\r\n */\nfunction invert(out, a) {\n var aa = a[0],\n ab = a[1],\n ac = a[2],\n ad = a[3];\n var atx = a[4],\n aty = a[5];\n\n var det = aa * ad - ab * ac;\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = ad * det;\n out[1] = -ab * det;\n out[2] = -ac * det;\n out[3] = aa * det;\n out[4] = (ac * aty - ad * atx) * det;\n out[5] = (ab * atx - aa * aty) * det;\n return out;\n}\n\n/**\r\n * Calculates the determinant of a mat2d\r\n *\r\n * @param {mat2d} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\nfunction determinant(a) {\n return a[0] * a[3] - a[1] * a[2];\n}\n\n/**\r\n * Multiplies two mat2d's\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the first operand\r\n * @param {mat2d} b the second operand\r\n * @returns {mat2d} out\r\n */\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n out[4] = a0 * b4 + a2 * b5 + a4;\n out[5] = a1 * b4 + a3 * b5 + a5;\n return out;\n}\n\n/**\r\n * Rotates a mat2d by the given angle\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2d} out\r\n */\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n\n/**\r\n * Scales the mat2d by the dimensions in the given vec2\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the matrix to translate\r\n * @param {vec2} v the vec2 to scale the matrix by\r\n * @returns {mat2d} out\r\n **/\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n\n/**\r\n * Translates the mat2d by the dimensions in the given vec2\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the matrix to translate\r\n * @param {vec2} v the vec2 to translate the matrix by\r\n * @returns {mat2d} out\r\n **/\nfunction translate(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0;\n out[1] = a1;\n out[2] = a2;\n out[3] = a3;\n out[4] = a0 * v0 + a2 * v1 + a4;\n out[5] = a1 * v0 + a3 * v1 + a5;\n return out;\n}\n\n/**\r\n * Creates a matrix from a given angle\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2d.identity(dest);\r\n * mat2d.rotate(dest, dest, rad);\r\n *\r\n * @param {mat2d} out mat2d receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2d} out\r\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2d.identity(dest);\r\n * mat2d.scale(dest, dest, vec);\r\n *\r\n * @param {mat2d} out mat2d receiving operation result\r\n * @param {vec2} v Scaling vector\r\n * @returns {mat2d} out\r\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n\n/**\r\n * Creates a matrix from a vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2d.identity(dest);\r\n * mat2d.translate(dest, dest, vec);\r\n *\r\n * @param {mat2d} out mat2d receiving operation result\r\n * @param {vec2} v Translation vector\r\n * @returns {mat2d} out\r\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = v[0];\n out[5] = v[1];\n return out;\n}\n\n/**\r\n * Returns a string representation of a mat2d\r\n *\r\n * @param {mat2d} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\nfunction str(a) {\n return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')';\n}\n\n/**\r\n * Returns Frobenius norm of a mat2d\r\n *\r\n * @param {mat2d} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1);\n}\n\n/**\r\n * Adds two mat2d's\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the first operand\r\n * @param {mat2d} b the second operand\r\n * @returns {mat2d} out\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n return out;\n}\n\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the first operand\r\n * @param {mat2d} b the second operand\r\n * @returns {mat2d} out\r\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n return out;\n}\n\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {mat2d} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat2d} out\r\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n return out;\n}\n\n/**\r\n * Adds two mat2d's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat2d} out the receiving vector\r\n * @param {mat2d} a the first operand\r\n * @param {mat2d} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat2d} out\r\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n return out;\n}\n\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {mat2d} a The first matrix.\r\n * @param {mat2d} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];\n}\n\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {mat2d} a The first matrix.\r\n * @param {mat2d} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));\n}\n\n/**\r\n * Alias for {@link mat2d.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Alias for {@link mat2d.subtract}\r\n * @function\r\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat2d.js?"); /***/ }), @@ -165,7 +180,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.fromMat4 = fromMat4;\nexports.clone = clone;\nexports.copy = copy;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.identity = identity;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.translate = translate;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromTranslation = fromTranslation;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromMat2d = fromMat2d;\nexports.fromQuat = fromQuat;\nexports.normalFromMat4 = normalFromMat4;\nexports.projection = projection;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 3x3 Matrix\n * @module mat3\n */\n\n/**\n * Creates a new identity mat3\n *\n * @returns {mat3} a new 3x3 matrix\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Copies the upper-left 3x3 values into the given mat3.\n *\n * @param {mat3} out the receiving 3x3 matrix\n * @param {mat4} a the source 4x4 matrix\n * @returns {mat3} out\n */\nfunction fromMat4(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[4];\n out[4] = a[5];\n out[5] = a[6];\n out[6] = a[8];\n out[7] = a[9];\n out[8] = a[10];\n return out;\n}\n\n/**\n * Creates a new mat3 initialized with values from an existing matrix\n *\n * @param {mat3} a matrix to clone\n * @returns {mat3} a new 3x3 matrix\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\n * Copy the values from one mat3 to another\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\n * Create a new mat3 with the given values\n *\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\n * @returns {mat3} A new mat3\n */\nfunction fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n\n/**\n * Set the components of a mat3 to the given values\n *\n * @param {mat3} out the receiving matrix\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\n * @returns {mat3} out\n */\nfunction set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n\n/**\n * Set a mat3 to the identity matrix\n *\n * @param {mat3} out the receiving matrix\n * @returns {mat3} out\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Transpose the values of a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a12 = a[5];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a01;\n out[5] = a[7];\n out[6] = a02;\n out[7] = a12;\n } else {\n out[0] = a[0];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a[1];\n out[4] = a[4];\n out[5] = a[7];\n out[6] = a[2];\n out[7] = a[5];\n out[8] = a[8];\n }\n\n return out;\n}\n\n/**\n * Inverts a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n var b01 = a22 * a11 - a12 * a21;\n var b11 = -a22 * a10 + a12 * a20;\n var b21 = a21 * a10 - a11 * a20;\n\n // Calculate the determinant\n var det = a00 * b01 + a01 * b11 + a02 * b21;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = b01 * det;\n out[1] = (-a22 * a01 + a02 * a21) * det;\n out[2] = (a12 * a01 - a02 * a11) * det;\n out[3] = b11 * det;\n out[4] = (a22 * a00 - a02 * a20) * det;\n out[5] = (-a12 * a00 + a02 * a10) * det;\n out[6] = b21 * det;\n out[7] = (-a21 * a00 + a01 * a20) * det;\n out[8] = (a11 * a00 - a01 * a10) * det;\n return out;\n}\n\n/**\n * Calculates the adjugate of a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the source matrix\n * @returns {mat3} out\n */\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n out[0] = a11 * a22 - a12 * a21;\n out[1] = a02 * a21 - a01 * a22;\n out[2] = a01 * a12 - a02 * a11;\n out[3] = a12 * a20 - a10 * a22;\n out[4] = a00 * a22 - a02 * a20;\n out[5] = a02 * a10 - a00 * a12;\n out[6] = a10 * a21 - a11 * a20;\n out[7] = a01 * a20 - a00 * a21;\n out[8] = a00 * a11 - a01 * a10;\n return out;\n}\n\n/**\n * Calculates the determinant of a mat3\n *\n * @param {mat3} a the source matrix\n * @returns {Number} determinant of a\n */\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);\n}\n\n/**\n * Multiplies two mat3's\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the first operand\n * @param {mat3} b the second operand\n * @returns {mat3} out\n */\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n var b00 = b[0],\n b01 = b[1],\n b02 = b[2];\n var b10 = b[3],\n b11 = b[4],\n b12 = b[5];\n var b20 = b[6],\n b21 = b[7],\n b22 = b[8];\n\n out[0] = b00 * a00 + b01 * a10 + b02 * a20;\n out[1] = b00 * a01 + b01 * a11 + b02 * a21;\n out[2] = b00 * a02 + b01 * a12 + b02 * a22;\n\n out[3] = b10 * a00 + b11 * a10 + b12 * a20;\n out[4] = b10 * a01 + b11 * a11 + b12 * a21;\n out[5] = b10 * a02 + b11 * a12 + b12 * a22;\n\n out[6] = b20 * a00 + b21 * a10 + b22 * a20;\n out[7] = b20 * a01 + b21 * a11 + b22 * a21;\n out[8] = b20 * a02 + b21 * a12 + b22 * a22;\n return out;\n}\n\n/**\n * Translate a mat3 by the given vector\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the matrix to translate\n * @param {vec2} v vector to translate by\n * @returns {mat3} out\n */\nfunction translate(out, a, v) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n x = v[0],\n y = v[1];\n\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n\n out[3] = a10;\n out[4] = a11;\n out[5] = a12;\n\n out[6] = x * a00 + y * a10 + a20;\n out[7] = x * a01 + y * a11 + a21;\n out[8] = x * a02 + y * a12 + a22;\n return out;\n}\n\n/**\n * Rotates a mat3 by the given angle\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat3} out\n */\nfunction rotate(out, a, rad) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n s = Math.sin(rad),\n c = Math.cos(rad);\n\n out[0] = c * a00 + s * a10;\n out[1] = c * a01 + s * a11;\n out[2] = c * a02 + s * a12;\n\n out[3] = c * a10 - s * a00;\n out[4] = c * a11 - s * a01;\n out[5] = c * a12 - s * a02;\n\n out[6] = a20;\n out[7] = a21;\n out[8] = a22;\n return out;\n};\n\n/**\n * Scales the mat3 by the dimensions in the given vec2\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the matrix to rotate\n * @param {vec2} v the vec2 to scale the matrix by\n * @returns {mat3} out\n **/\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1];\n\n out[0] = x * a[0];\n out[1] = x * a[1];\n out[2] = x * a[2];\n\n out[3] = y * a[3];\n out[4] = y * a[4];\n out[5] = y * a[5];\n\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\n * Creates a matrix from a vector translation\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.translate(dest, dest, vec);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {vec2} v Translation vector\n * @returns {mat3} out\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = v[0];\n out[7] = v[1];\n out[8] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from a given angle\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.rotate(dest, dest, rad);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat3} out\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n\n out[3] = -s;\n out[4] = c;\n out[5] = 0;\n\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.scale(dest, dest, vec);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {vec2} v Scaling vector\n * @returns {mat3} out\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n\n out[3] = 0;\n out[4] = v[1];\n out[5] = 0;\n\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\n * Copies the values from a mat2d into a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {mat2d} a the matrix to copy\n * @returns {mat3} out\n **/\nfunction fromMat2d(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = 0;\n\n out[3] = a[2];\n out[4] = a[3];\n out[5] = 0;\n\n out[6] = a[4];\n out[7] = a[5];\n out[8] = 1;\n return out;\n}\n\n/**\n* Calculates a 3x3 matrix from the given quaternion\n*\n* @param {mat3} out mat3 receiving operation result\n* @param {quat} q Quaternion to create matrix from\n*\n* @returns {mat3} out\n*/\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n out[0] = 1 - yy - zz;\n out[3] = yx - wz;\n out[6] = zx + wy;\n\n out[1] = yx + wz;\n out[4] = 1 - xx - zz;\n out[7] = zy - wx;\n\n out[2] = zx - wy;\n out[5] = zy + wx;\n out[8] = 1 - xx - yy;\n\n return out;\n}\n\n/**\n* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix\n*\n* @param {mat3} out mat3 receiving operation result\n* @param {mat4} a Mat4 to derive the normal matrix from\n*\n* @returns {mat3} out\n*/\nfunction normalFromMat4(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32;\n\n // Calculate the determinant\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n\n out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n\n out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n\n return out;\n}\n\n/**\n * Generates a 2D projection matrix with the given bounds\n *\n * @param {mat3} out mat3 frustum matrix will be written into\n * @param {number} width Width of your gl context\n * @param {number} height Height of gl context\n * @returns {mat3} out\n */\nfunction projection(out, width, height) {\n out[0] = 2 / width;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = -2 / height;\n out[5] = 0;\n out[6] = -1;\n out[7] = 1;\n out[8] = 1;\n return out;\n}\n\n/**\n * Returns a string representation of a mat3\n *\n * @param {mat3} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\nfunction str(a) {\n return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')';\n}\n\n/**\n * Returns Frobenius norm of a mat3\n *\n * @param {mat3} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2));\n}\n\n/**\n * Adds two mat3's\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the first operand\n * @param {mat3} b the second operand\n * @returns {mat3} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n return out;\n}\n\n/**\n * Subtracts matrix b from matrix a\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the first operand\n * @param {mat3} b the second operand\n * @returns {mat3} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n return out;\n}\n\n/**\n * Multiply each element of the matrix by a scalar.\n *\n * @param {mat3} out the receiving matrix\n * @param {mat3} a the matrix to scale\n * @param {Number} b amount to scale the matrix's elements by\n * @returns {mat3} out\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n return out;\n}\n\n/**\n * Adds two mat3's after multiplying each element of the second operand by a scalar value.\n *\n * @param {mat3} out the receiving vector\n * @param {mat3} a the first operand\n * @param {mat3} b the second operand\n * @param {Number} scale the amount to scale b's elements by before adding\n * @returns {mat3} out\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n return out;\n}\n\n/**\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\n *\n * @param {mat3} a The first matrix.\n * @param {mat3} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];\n}\n\n/**\n * Returns whether or not the matrices have approximately the same elements in the same position.\n *\n * @param {mat3} a The first matrix.\n * @param {mat3} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7],\n a8 = a[8];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7],\n b8 = b[8];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));\n}\n\n/**\n * Alias for {@link mat3.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link mat3.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat3.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.fromMat4 = fromMat4;\nexports.clone = clone;\nexports.copy = copy;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.identity = identity;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.translate = translate;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromTranslation = fromTranslation;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromMat2d = fromMat2d;\nexports.fromQuat = fromQuat;\nexports.normalFromMat4 = normalFromMat4;\nexports.projection = projection;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * 3x3 Matrix\r\n * @module mat3\r\n */\n\n/**\r\n * Creates a new identity mat3\r\n *\r\n * @returns {mat3} a new 3x3 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\r\n * Copies the upper-left 3x3 values into the given mat3.\r\n *\r\n * @param {mat3} out the receiving 3x3 matrix\r\n * @param {mat4} a the source 4x4 matrix\r\n * @returns {mat3} out\r\n */\nfunction fromMat4(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[4];\n out[4] = a[5];\n out[5] = a[6];\n out[6] = a[8];\n out[7] = a[9];\n out[8] = a[10];\n return out;\n}\n\n/**\r\n * Creates a new mat3 initialized with values from an existing matrix\r\n *\r\n * @param {mat3} a matrix to clone\r\n * @returns {mat3} a new 3x3 matrix\r\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\r\n * Copy the values from one mat3 to another\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the source matrix\r\n * @returns {mat3} out\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\r\n * Create a new mat3 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\r\n * @returns {mat3} A new mat3\r\n */\nfunction fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n\n/**\r\n * Set the components of a mat3 to the given values\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\r\n * @returns {mat3} out\r\n */\nfunction set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n\n/**\r\n * Set a mat3 to the identity matrix\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @returns {mat3} out\r\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\r\n * Transpose the values of a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the source matrix\r\n * @returns {mat3} out\r\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a12 = a[5];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a01;\n out[5] = a[7];\n out[6] = a02;\n out[7] = a12;\n } else {\n out[0] = a[0];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a[1];\n out[4] = a[4];\n out[5] = a[7];\n out[6] = a[2];\n out[7] = a[5];\n out[8] = a[8];\n }\n\n return out;\n}\n\n/**\r\n * Inverts a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the source matrix\r\n * @returns {mat3} out\r\n */\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n var b01 = a22 * a11 - a12 * a21;\n var b11 = -a22 * a10 + a12 * a20;\n var b21 = a21 * a10 - a11 * a20;\n\n // Calculate the determinant\n var det = a00 * b01 + a01 * b11 + a02 * b21;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = b01 * det;\n out[1] = (-a22 * a01 + a02 * a21) * det;\n out[2] = (a12 * a01 - a02 * a11) * det;\n out[3] = b11 * det;\n out[4] = (a22 * a00 - a02 * a20) * det;\n out[5] = (-a12 * a00 + a02 * a10) * det;\n out[6] = b21 * det;\n out[7] = (-a21 * a00 + a01 * a20) * det;\n out[8] = (a11 * a00 - a01 * a10) * det;\n return out;\n}\n\n/**\r\n * Calculates the adjugate of a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the source matrix\r\n * @returns {mat3} out\r\n */\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n out[0] = a11 * a22 - a12 * a21;\n out[1] = a02 * a21 - a01 * a22;\n out[2] = a01 * a12 - a02 * a11;\n out[3] = a12 * a20 - a10 * a22;\n out[4] = a00 * a22 - a02 * a20;\n out[5] = a02 * a10 - a00 * a12;\n out[6] = a10 * a21 - a11 * a20;\n out[7] = a01 * a20 - a00 * a21;\n out[8] = a00 * a11 - a01 * a10;\n return out;\n}\n\n/**\r\n * Calculates the determinant of a mat3\r\n *\r\n * @param {mat3} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);\n}\n\n/**\r\n * Multiplies two mat3's\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the first operand\r\n * @param {mat3} b the second operand\r\n * @returns {mat3} out\r\n */\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n\n var b00 = b[0],\n b01 = b[1],\n b02 = b[2];\n var b10 = b[3],\n b11 = b[4],\n b12 = b[5];\n var b20 = b[6],\n b21 = b[7],\n b22 = b[8];\n\n out[0] = b00 * a00 + b01 * a10 + b02 * a20;\n out[1] = b00 * a01 + b01 * a11 + b02 * a21;\n out[2] = b00 * a02 + b01 * a12 + b02 * a22;\n\n out[3] = b10 * a00 + b11 * a10 + b12 * a20;\n out[4] = b10 * a01 + b11 * a11 + b12 * a21;\n out[5] = b10 * a02 + b11 * a12 + b12 * a22;\n\n out[6] = b20 * a00 + b21 * a10 + b22 * a20;\n out[7] = b20 * a01 + b21 * a11 + b22 * a21;\n out[8] = b20 * a02 + b21 * a12 + b22 * a22;\n return out;\n}\n\n/**\r\n * Translate a mat3 by the given vector\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the matrix to translate\r\n * @param {vec2} v vector to translate by\r\n * @returns {mat3} out\r\n */\nfunction translate(out, a, v) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n x = v[0],\n y = v[1];\n\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n\n out[3] = a10;\n out[4] = a11;\n out[5] = a12;\n\n out[6] = x * a00 + y * a10 + a20;\n out[7] = x * a01 + y * a11 + a21;\n out[8] = x * a02 + y * a12 + a22;\n return out;\n}\n\n/**\r\n * Rotates a mat3 by the given angle\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat3} out\r\n */\nfunction rotate(out, a, rad) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n s = Math.sin(rad),\n c = Math.cos(rad);\n\n out[0] = c * a00 + s * a10;\n out[1] = c * a01 + s * a11;\n out[2] = c * a02 + s * a12;\n\n out[3] = c * a10 - s * a00;\n out[4] = c * a11 - s * a01;\n out[5] = c * a12 - s * a02;\n\n out[6] = a20;\n out[7] = a21;\n out[8] = a22;\n return out;\n};\n\n/**\r\n * Scales the mat3 by the dimensions in the given vec2\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the matrix to rotate\r\n * @param {vec2} v the vec2 to scale the matrix by\r\n * @returns {mat3} out\r\n **/\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1];\n\n out[0] = x * a[0];\n out[1] = x * a[1];\n out[2] = x * a[2];\n\n out[3] = y * a[3];\n out[4] = y * a[4];\n out[5] = y * a[5];\n\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n\n/**\r\n * Creates a matrix from a vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.translate(dest, dest, vec);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {vec2} v Translation vector\r\n * @returns {mat3} out\r\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = v[0];\n out[7] = v[1];\n out[8] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from a given angle\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.rotate(dest, dest, rad);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat3} out\r\n */\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n\n out[3] = -s;\n out[4] = c;\n out[5] = 0;\n\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.scale(dest, dest, vec);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {vec2} v Scaling vector\r\n * @returns {mat3} out\r\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n\n out[3] = 0;\n out[4] = v[1];\n out[5] = 0;\n\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n\n/**\r\n * Copies the values from a mat2d into a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat2d} a the matrix to copy\r\n * @returns {mat3} out\r\n **/\nfunction fromMat2d(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = 0;\n\n out[3] = a[2];\n out[4] = a[3];\n out[5] = 0;\n\n out[6] = a[4];\n out[7] = a[5];\n out[8] = 1;\n return out;\n}\n\n/**\r\n* Calculates a 3x3 matrix from the given quaternion\r\n*\r\n* @param {mat3} out mat3 receiving operation result\r\n* @param {quat} q Quaternion to create matrix from\r\n*\r\n* @returns {mat3} out\r\n*/\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n out[0] = 1 - yy - zz;\n out[3] = yx - wz;\n out[6] = zx + wy;\n\n out[1] = yx + wz;\n out[4] = 1 - xx - zz;\n out[7] = zy - wx;\n\n out[2] = zx - wy;\n out[5] = zy + wx;\n out[8] = 1 - xx - yy;\n\n return out;\n}\n\n/**\r\n* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix\r\n*\r\n* @param {mat3} out mat3 receiving operation result\r\n* @param {mat4} a Mat4 to derive the normal matrix from\r\n*\r\n* @returns {mat3} out\r\n*/\nfunction normalFromMat4(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32;\n\n // Calculate the determinant\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n\n out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n\n out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n\n return out;\n}\n\n/**\r\n * Generates a 2D projection matrix with the given bounds\r\n *\r\n * @param {mat3} out mat3 frustum matrix will be written into\r\n * @param {number} width Width of your gl context\r\n * @param {number} height Height of gl context\r\n * @returns {mat3} out\r\n */\nfunction projection(out, width, height) {\n out[0] = 2 / width;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = -2 / height;\n out[5] = 0;\n out[6] = -1;\n out[7] = 1;\n out[8] = 1;\n return out;\n}\n\n/**\r\n * Returns a string representation of a mat3\r\n *\r\n * @param {mat3} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\nfunction str(a) {\n return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')';\n}\n\n/**\r\n * Returns Frobenius norm of a mat3\r\n *\r\n * @param {mat3} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2));\n}\n\n/**\r\n * Adds two mat3's\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the first operand\r\n * @param {mat3} b the second operand\r\n * @returns {mat3} out\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n return out;\n}\n\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the first operand\r\n * @param {mat3} b the second operand\r\n * @returns {mat3} out\r\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n return out;\n}\n\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {mat3} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat3} out\r\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n return out;\n}\n\n/**\r\n * Adds two mat3's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat3} out the receiving vector\r\n * @param {mat3} a the first operand\r\n * @param {mat3} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat3} out\r\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n return out;\n}\n\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {mat3} a The first matrix.\r\n * @param {mat3} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];\n}\n\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {mat3} a The first matrix.\r\n * @param {mat3} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7],\n a8 = a[8];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7],\n b8 = b[8];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));\n}\n\n/**\r\n * Alias for {@link mat3.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Alias for {@link mat3.subtract}\r\n * @function\r\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat3.js?"); /***/ }), @@ -177,7 +192,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.identity = identity;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.translate = translate;\nexports.scale = scale;\nexports.rotate = rotate;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.fromTranslation = fromTranslation;\nexports.fromScaling = fromScaling;\nexports.fromRotation = fromRotation;\nexports.fromXRotation = fromXRotation;\nexports.fromYRotation = fromYRotation;\nexports.fromZRotation = fromZRotation;\nexports.fromRotationTranslation = fromRotationTranslation;\nexports.fromQuat2 = fromQuat2;\nexports.getTranslation = getTranslation;\nexports.getScaling = getScaling;\nexports.getRotation = getRotation;\nexports.fromRotationTranslationScale = fromRotationTranslationScale;\nexports.fromRotationTranslationScaleOrigin = fromRotationTranslationScaleOrigin;\nexports.fromQuat = fromQuat;\nexports.frustum = frustum;\nexports.perspective = perspective;\nexports.perspectiveFromFieldOfView = perspectiveFromFieldOfView;\nexports.ortho = ortho;\nexports.lookAt = lookAt;\nexports.targetTo = targetTo;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 4x4 Matrix
Format: column-major, when typed out it looks like row-major
The matrices are being post multiplied.\n * @module mat4\n */\n\n/**\n * Creates a new identity mat4\n *\n * @returns {mat4} a new 4x4 matrix\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\n * Creates a new mat4 initialized with values from an existing matrix\n *\n * @param {mat4} a matrix to clone\n * @returns {mat4} a new 4x4 matrix\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n\n/**\n * Copy the values from one mat4 to another\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the source matrix\n * @returns {mat4} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n\n/**\n * Create a new mat4 with the given values\n *\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\n * @returns {mat4} A new mat4\n */\nfunction fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n\n/**\n * Set the components of a mat4 to the given values\n *\n * @param {mat4} out the receiving matrix\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\n * @returns {mat4} out\n */\nfunction set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n\n/**\n * Set a mat4 to the identity matrix\n *\n * @param {mat4} out the receiving matrix\n * @returns {mat4} out\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\n * Transpose the values of a mat4\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the source matrix\n * @returns {mat4} out\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a12 = a[6],\n a13 = a[7];\n var a23 = a[11];\n\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a01;\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a02;\n out[9] = a12;\n out[11] = a[14];\n out[12] = a03;\n out[13] = a13;\n out[14] = a23;\n } else {\n out[0] = a[0];\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a[1];\n out[5] = a[5];\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a[2];\n out[9] = a[6];\n out[10] = a[10];\n out[11] = a[14];\n out[12] = a[3];\n out[13] = a[7];\n out[14] = a[11];\n out[15] = a[15];\n }\n\n return out;\n}\n\n/**\n * Inverts a mat4\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the source matrix\n * @returns {mat4} out\n */\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32;\n\n // Calculate the determinant\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;\n out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;\n out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;\n out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;\n out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;\n out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;\n out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;\n\n return out;\n}\n\n/**\n * Calculates the adjugate of a mat4\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the source matrix\n * @returns {mat4} out\n */\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);\n out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));\n out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);\n out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));\n out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));\n out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);\n out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));\n out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);\n out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);\n out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));\n out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);\n out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));\n out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));\n out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);\n out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));\n out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);\n return out;\n}\n\n/**\n * Calculates the determinant of a mat4\n *\n * @param {mat4} a the source matrix\n * @returns {Number} determinant of a\n */\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32;\n\n // Calculate the determinant\n return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n}\n\n/**\n * Multiplies two mat4s\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the first operand\n * @param {mat4} b the second operand\n * @returns {mat4} out\n */\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n // Cache only the current line of the second matrix\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n\n b0 = b[4];b1 = b[5];b2 = b[6];b3 = b[7];\n out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n\n b0 = b[8];b1 = b[9];b2 = b[10];b3 = b[11];\n out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n\n b0 = b[12];b1 = b[13];b2 = b[14];b3 = b[15];\n out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n return out;\n}\n\n/**\n * Translate a mat4 by the given vector\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the matrix to translate\n * @param {vec3} v vector to translate by\n * @returns {mat4} out\n */\nfunction translate(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n var a00 = void 0,\n a01 = void 0,\n a02 = void 0,\n a03 = void 0;\n var a10 = void 0,\n a11 = void 0,\n a12 = void 0,\n a13 = void 0;\n var a20 = void 0,\n a21 = void 0,\n a22 = void 0,\n a23 = void 0;\n\n if (a === out) {\n out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];\n out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];\n out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];\n out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];\n } else {\n a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];\n a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];\n a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];\n\n out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03;\n out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13;\n out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23;\n\n out[12] = a00 * x + a10 * y + a20 * z + a[12];\n out[13] = a01 * x + a11 * y + a21 * z + a[13];\n out[14] = a02 * x + a12 * y + a22 * z + a[14];\n out[15] = a03 * x + a13 * y + a23 * z + a[15];\n }\n\n return out;\n}\n\n/**\n * Scales the mat4 by the dimensions in the given vec3 not using vectorization\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the matrix to scale\n * @param {vec3} v the vec3 to scale the matrix by\n * @returns {mat4} out\n **/\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n\n out[0] = a[0] * x;\n out[1] = a[1] * x;\n out[2] = a[2] * x;\n out[3] = a[3] * x;\n out[4] = a[4] * y;\n out[5] = a[5] * y;\n out[6] = a[6] * y;\n out[7] = a[7] * y;\n out[8] = a[8] * z;\n out[9] = a[9] * z;\n out[10] = a[10] * z;\n out[11] = a[11] * z;\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n\n/**\n * Rotates a mat4 by the given angle around the given axis\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @param {vec3} axis the axis to rotate around\n * @returns {mat4} out\n */\nfunction rotate(out, a, rad, axis) {\n var x = axis[0],\n y = axis[1],\n z = axis[2];\n var len = Math.sqrt(x * x + y * y + z * z);\n var s = void 0,\n c = void 0,\n t = void 0;\n var a00 = void 0,\n a01 = void 0,\n a02 = void 0,\n a03 = void 0;\n var a10 = void 0,\n a11 = void 0,\n a12 = void 0,\n a13 = void 0;\n var a20 = void 0,\n a21 = void 0,\n a22 = void 0,\n a23 = void 0;\n var b00 = void 0,\n b01 = void 0,\n b02 = void 0;\n var b10 = void 0,\n b11 = void 0,\n b12 = void 0;\n var b20 = void 0,\n b21 = void 0,\n b22 = void 0;\n\n if (len < glMatrix.EPSILON) {\n return null;\n }\n\n len = 1 / len;\n x *= len;\n y *= len;\n z *= len;\n\n s = Math.sin(rad);\n c = Math.cos(rad);\n t = 1 - c;\n\n a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];\n a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];\n a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];\n\n // Construct the elements of the rotation matrix\n b00 = x * x * t + c;b01 = y * x * t + z * s;b02 = z * x * t - y * s;\n b10 = x * y * t - z * s;b11 = y * y * t + c;b12 = z * y * t + x * s;\n b20 = x * z * t + y * s;b21 = y * z * t - x * s;b22 = z * z * t + c;\n\n // Perform rotation-specific matrix multiplication\n out[0] = a00 * b00 + a10 * b01 + a20 * b02;\n out[1] = a01 * b00 + a11 * b01 + a21 * b02;\n out[2] = a02 * b00 + a12 * b01 + a22 * b02;\n out[3] = a03 * b00 + a13 * b01 + a23 * b02;\n out[4] = a00 * b10 + a10 * b11 + a20 * b12;\n out[5] = a01 * b10 + a11 * b11 + a21 * b12;\n out[6] = a02 * b10 + a12 * b11 + a22 * b12;\n out[7] = a03 * b10 + a13 * b11 + a23 * b12;\n out[8] = a00 * b20 + a10 * b21 + a20 * b22;\n out[9] = a01 * b20 + a11 * b21 + a21 * b22;\n out[10] = a02 * b20 + a12 * b21 + a22 * b22;\n out[11] = a03 * b20 + a13 * b21 + a23 * b22;\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged last row\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n return out;\n}\n\n/**\n * Rotates a matrix by the given angle around the X axis\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat4} out\n */\nfunction rotateX(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a10 = a[4];\n var a11 = a[5];\n var a12 = a[6];\n var a13 = a[7];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged rows\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n // Perform axis-specific matrix multiplication\n out[4] = a10 * c + a20 * s;\n out[5] = a11 * c + a21 * s;\n out[6] = a12 * c + a22 * s;\n out[7] = a13 * c + a23 * s;\n out[8] = a20 * c - a10 * s;\n out[9] = a21 * c - a11 * s;\n out[10] = a22 * c - a12 * s;\n out[11] = a23 * c - a13 * s;\n return out;\n}\n\n/**\n * Rotates a matrix by the given angle around the Y axis\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat4} out\n */\nfunction rotateY(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a00 = a[0];\n var a01 = a[1];\n var a02 = a[2];\n var a03 = a[3];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged rows\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n // Perform axis-specific matrix multiplication\n out[0] = a00 * c - a20 * s;\n out[1] = a01 * c - a21 * s;\n out[2] = a02 * c - a22 * s;\n out[3] = a03 * c - a23 * s;\n out[8] = a00 * s + a20 * c;\n out[9] = a01 * s + a21 * c;\n out[10] = a02 * s + a22 * c;\n out[11] = a03 * s + a23 * c;\n return out;\n}\n\n/**\n * Rotates a matrix by the given angle around the Z axis\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat4} out\n */\nfunction rotateZ(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a00 = a[0];\n var a01 = a[1];\n var a02 = a[2];\n var a03 = a[3];\n var a10 = a[4];\n var a11 = a[5];\n var a12 = a[6];\n var a13 = a[7];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged last row\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n // Perform axis-specific matrix multiplication\n out[0] = a00 * c + a10 * s;\n out[1] = a01 * c + a11 * s;\n out[2] = a02 * c + a12 * s;\n out[3] = a03 * c + a13 * s;\n out[4] = a10 * c - a00 * s;\n out[5] = a11 * c - a01 * s;\n out[6] = a12 * c - a02 * s;\n out[7] = a13 * c - a03 * s;\n return out;\n}\n\n/**\n * Creates a matrix from a vector translation\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.translate(dest, dest, vec);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {vec3} v Translation vector\n * @returns {mat4} out\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.scale(dest, dest, vec);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {vec3} v Scaling vector\n * @returns {mat4} out\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = v[1];\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = v[2];\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from a given angle around a given axis\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.rotate(dest, dest, rad, axis);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @param {vec3} axis the axis to rotate around\n * @returns {mat4} out\n */\nfunction fromRotation(out, rad, axis) {\n var x = axis[0],\n y = axis[1],\n z = axis[2];\n var len = Math.sqrt(x * x + y * y + z * z);\n var s = void 0,\n c = void 0,\n t = void 0;\n\n if (len < glMatrix.EPSILON) {\n return null;\n }\n\n len = 1 / len;\n x *= len;\n y *= len;\n z *= len;\n\n s = Math.sin(rad);\n c = Math.cos(rad);\n t = 1 - c;\n\n // Perform rotation-specific matrix multiplication\n out[0] = x * x * t + c;\n out[1] = y * x * t + z * s;\n out[2] = z * x * t - y * s;\n out[3] = 0;\n out[4] = x * y * t - z * s;\n out[5] = y * y * t + c;\n out[6] = z * y * t + x * s;\n out[7] = 0;\n out[8] = x * z * t + y * s;\n out[9] = y * z * t - x * s;\n out[10] = z * z * t + c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from the given angle around the X axis\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.rotateX(dest, dest, rad);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat4} out\n */\nfunction fromXRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n\n // Perform axis-specific matrix multiplication\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = c;\n out[6] = s;\n out[7] = 0;\n out[8] = 0;\n out[9] = -s;\n out[10] = c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from the given angle around the Y axis\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.rotateY(dest, dest, rad);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat4} out\n */\nfunction fromYRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n\n // Perform axis-specific matrix multiplication\n out[0] = c;\n out[1] = 0;\n out[2] = -s;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = s;\n out[9] = 0;\n out[10] = c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from the given angle around the Z axis\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.rotateZ(dest, dest, rad);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat4} out\n */\nfunction fromZRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n\n // Perform axis-specific matrix multiplication\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n out[3] = 0;\n out[4] = -s;\n out[5] = c;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\n * Creates a matrix from a quaternion rotation and vector translation\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.translate(dest, vec);\n * let quatMat = mat4.create();\n * quat4.toMat4(quat, quatMat);\n * mat4.multiply(dest, quatMat);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {quat4} q Rotation quaternion\n * @param {vec3} v Translation vector\n * @returns {mat4} out\n */\nfunction fromRotationTranslation(out, q, v) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n out[0] = 1 - (yy + zz);\n out[1] = xy + wz;\n out[2] = xz - wy;\n out[3] = 0;\n out[4] = xy - wz;\n out[5] = 1 - (xx + zz);\n out[6] = yz + wx;\n out[7] = 0;\n out[8] = xz + wy;\n out[9] = yz - wx;\n out[10] = 1 - (xx + yy);\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n\n return out;\n}\n\n/**\n * Creates a new mat4 from a dual quat.\n *\n * @param {mat4} out Matrix\n * @param {quat2} a Dual Quaternion\n * @returns {mat4} mat4 receiving operation result\n */\nfunction fromQuat2(out, a) {\n var translation = new glMatrix.ARRAY_TYPE(3);\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7];\n\n var magnitude = bx * bx + by * by + bz * bz + bw * bw;\n //Only scale if it makes sense\n if (magnitude > 0) {\n translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude;\n translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude;\n translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude;\n } else {\n translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;\n translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;\n translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;\n }\n fromRotationTranslation(out, a, translation);\n return out;\n}\n\n/**\n * Returns the translation vector component of a transformation\n * matrix. If a matrix is built with fromRotationTranslation,\n * the returned vector will be the same as the translation vector\n * originally supplied.\n * @param {vec3} out Vector to receive translation component\n * @param {mat4} mat Matrix to be decomposed (input)\n * @return {vec3} out\n */\nfunction getTranslation(out, mat) {\n out[0] = mat[12];\n out[1] = mat[13];\n out[2] = mat[14];\n\n return out;\n}\n\n/**\n * Returns the scaling factor component of a transformation\n * matrix. If a matrix is built with fromRotationTranslationScale\n * with a normalized Quaternion paramter, the returned vector will be\n * the same as the scaling vector\n * originally supplied.\n * @param {vec3} out Vector to receive scaling factor component\n * @param {mat4} mat Matrix to be decomposed (input)\n * @return {vec3} out\n */\nfunction getScaling(out, mat) {\n var m11 = mat[0];\n var m12 = mat[1];\n var m13 = mat[2];\n var m21 = mat[4];\n var m22 = mat[5];\n var m23 = mat[6];\n var m31 = mat[8];\n var m32 = mat[9];\n var m33 = mat[10];\n\n out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);\n out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);\n out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);\n\n return out;\n}\n\n/**\n * Returns a quaternion representing the rotational component\n * of a transformation matrix. If a matrix is built with\n * fromRotationTranslation, the returned quaternion will be the\n * same as the quaternion originally supplied.\n * @param {quat} out Quaternion to receive the rotation component\n * @param {mat4} mat Matrix to be decomposed (input)\n * @return {quat} out\n */\nfunction getRotation(out, mat) {\n // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm\n var trace = mat[0] + mat[5] + mat[10];\n var S = 0;\n\n if (trace > 0) {\n S = Math.sqrt(trace + 1.0) * 2;\n out[3] = 0.25 * S;\n out[0] = (mat[6] - mat[9]) / S;\n out[1] = (mat[8] - mat[2]) / S;\n out[2] = (mat[1] - mat[4]) / S;\n } else if (mat[0] > mat[5] && mat[0] > mat[10]) {\n S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;\n out[3] = (mat[6] - mat[9]) / S;\n out[0] = 0.25 * S;\n out[1] = (mat[1] + mat[4]) / S;\n out[2] = (mat[8] + mat[2]) / S;\n } else if (mat[5] > mat[10]) {\n S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;\n out[3] = (mat[8] - mat[2]) / S;\n out[0] = (mat[1] + mat[4]) / S;\n out[1] = 0.25 * S;\n out[2] = (mat[6] + mat[9]) / S;\n } else {\n S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;\n out[3] = (mat[1] - mat[4]) / S;\n out[0] = (mat[8] + mat[2]) / S;\n out[1] = (mat[6] + mat[9]) / S;\n out[2] = 0.25 * S;\n }\n\n return out;\n}\n\n/**\n * Creates a matrix from a quaternion rotation, vector translation and vector scale\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.translate(dest, vec);\n * let quatMat = mat4.create();\n * quat4.toMat4(quat, quatMat);\n * mat4.multiply(dest, quatMat);\n * mat4.scale(dest, scale)\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {quat4} q Rotation quaternion\n * @param {vec3} v Translation vector\n * @param {vec3} s Scaling vector\n * @returns {mat4} out\n */\nfunction fromRotationTranslationScale(out, q, v, s) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n var sx = s[0];\n var sy = s[1];\n var sz = s[2];\n\n out[0] = (1 - (yy + zz)) * sx;\n out[1] = (xy + wz) * sx;\n out[2] = (xz - wy) * sx;\n out[3] = 0;\n out[4] = (xy - wz) * sy;\n out[5] = (1 - (xx + zz)) * sy;\n out[6] = (yz + wx) * sy;\n out[7] = 0;\n out[8] = (xz + wy) * sz;\n out[9] = (yz - wx) * sz;\n out[10] = (1 - (xx + yy)) * sz;\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n\n return out;\n}\n\n/**\n * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin\n * This is equivalent to (but much faster than):\n *\n * mat4.identity(dest);\n * mat4.translate(dest, vec);\n * mat4.translate(dest, origin);\n * let quatMat = mat4.create();\n * quat4.toMat4(quat, quatMat);\n * mat4.multiply(dest, quatMat);\n * mat4.scale(dest, scale)\n * mat4.translate(dest, negativeOrigin);\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {quat4} q Rotation quaternion\n * @param {vec3} v Translation vector\n * @param {vec3} s Scaling vector\n * @param {vec3} o The origin vector around which to scale and rotate\n * @returns {mat4} out\n */\nfunction fromRotationTranslationScaleOrigin(out, q, v, s, o) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n var sx = s[0];\n var sy = s[1];\n var sz = s[2];\n\n var ox = o[0];\n var oy = o[1];\n var oz = o[2];\n\n var out0 = (1 - (yy + zz)) * sx;\n var out1 = (xy + wz) * sx;\n var out2 = (xz - wy) * sx;\n var out4 = (xy - wz) * sy;\n var out5 = (1 - (xx + zz)) * sy;\n var out6 = (yz + wx) * sy;\n var out8 = (xz + wy) * sz;\n var out9 = (yz - wx) * sz;\n var out10 = (1 - (xx + yy)) * sz;\n\n out[0] = out0;\n out[1] = out1;\n out[2] = out2;\n out[3] = 0;\n out[4] = out4;\n out[5] = out5;\n out[6] = out6;\n out[7] = 0;\n out[8] = out8;\n out[9] = out9;\n out[10] = out10;\n out[11] = 0;\n out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);\n out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);\n out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);\n out[15] = 1;\n\n return out;\n}\n\n/**\n * Calculates a 4x4 matrix from the given quaternion\n *\n * @param {mat4} out mat4 receiving operation result\n * @param {quat} q Quaternion to create matrix from\n *\n * @returns {mat4} out\n */\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n out[0] = 1 - yy - zz;\n out[1] = yx + wz;\n out[2] = zx - wy;\n out[3] = 0;\n\n out[4] = yx - wz;\n out[5] = 1 - xx - zz;\n out[6] = zy + wx;\n out[7] = 0;\n\n out[8] = zx + wy;\n out[9] = zy - wx;\n out[10] = 1 - xx - yy;\n out[11] = 0;\n\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n\n return out;\n}\n\n/**\n * Generates a frustum matrix with the given bounds\n *\n * @param {mat4} out mat4 frustum matrix will be written into\n * @param {Number} left Left bound of the frustum\n * @param {Number} right Right bound of the frustum\n * @param {Number} bottom Bottom bound of the frustum\n * @param {Number} top Top bound of the frustum\n * @param {Number} near Near bound of the frustum\n * @param {Number} far Far bound of the frustum\n * @returns {mat4} out\n */\nfunction frustum(out, left, right, bottom, top, near, far) {\n var rl = 1 / (right - left);\n var tb = 1 / (top - bottom);\n var nf = 1 / (near - far);\n out[0] = near * 2 * rl;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = near * 2 * tb;\n out[6] = 0;\n out[7] = 0;\n out[8] = (right + left) * rl;\n out[9] = (top + bottom) * tb;\n out[10] = (far + near) * nf;\n out[11] = -1;\n out[12] = 0;\n out[13] = 0;\n out[14] = far * near * 2 * nf;\n out[15] = 0;\n return out;\n}\n\n/**\n * Generates a perspective projection matrix with the given bounds\n *\n * @param {mat4} out mat4 frustum matrix will be written into\n * @param {number} fovy Vertical field of view in radians\n * @param {number} aspect Aspect ratio. typically viewport width/height\n * @param {number} near Near bound of the frustum\n * @param {number} far Far bound of the frustum\n * @returns {mat4} out\n */\nfunction perspective(out, fovy, aspect, near, far) {\n var f = 1.0 / Math.tan(fovy / 2);\n var nf = 1 / (near - far);\n out[0] = f / aspect;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = f;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = (far + near) * nf;\n out[11] = -1;\n out[12] = 0;\n out[13] = 0;\n out[14] = 2 * far * near * nf;\n out[15] = 0;\n return out;\n}\n\n/**\n * Generates a perspective projection matrix with the given field of view.\n * This is primarily useful for generating projection matrices to be used\n * with the still experiemental WebVR API.\n *\n * @param {mat4} out mat4 frustum matrix will be written into\n * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees\n * @param {number} near Near bound of the frustum\n * @param {number} far Far bound of the frustum\n * @returns {mat4} out\n */\nfunction perspectiveFromFieldOfView(out, fov, near, far) {\n var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);\n var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);\n var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);\n var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);\n var xScale = 2.0 / (leftTan + rightTan);\n var yScale = 2.0 / (upTan + downTan);\n\n out[0] = xScale;\n out[1] = 0.0;\n out[2] = 0.0;\n out[3] = 0.0;\n out[4] = 0.0;\n out[5] = yScale;\n out[6] = 0.0;\n out[7] = 0.0;\n out[8] = -((leftTan - rightTan) * xScale * 0.5);\n out[9] = (upTan - downTan) * yScale * 0.5;\n out[10] = far / (near - far);\n out[11] = -1.0;\n out[12] = 0.0;\n out[13] = 0.0;\n out[14] = far * near / (near - far);\n out[15] = 0.0;\n return out;\n}\n\n/**\n * Generates a orthogonal projection matrix with the given bounds\n *\n * @param {mat4} out mat4 frustum matrix will be written into\n * @param {number} left Left bound of the frustum\n * @param {number} right Right bound of the frustum\n * @param {number} bottom Bottom bound of the frustum\n * @param {number} top Top bound of the frustum\n * @param {number} near Near bound of the frustum\n * @param {number} far Far bound of the frustum\n * @returns {mat4} out\n */\nfunction ortho(out, left, right, bottom, top, near, far) {\n var lr = 1 / (left - right);\n var bt = 1 / (bottom - top);\n var nf = 1 / (near - far);\n out[0] = -2 * lr;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = -2 * bt;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 2 * nf;\n out[11] = 0;\n out[12] = (left + right) * lr;\n out[13] = (top + bottom) * bt;\n out[14] = (far + near) * nf;\n out[15] = 1;\n return out;\n}\n\n/**\n * Generates a look-at matrix with the given eye position, focal point, and up axis.\n * If you want a matrix that actually makes an object look at another object, you should use targetTo instead.\n *\n * @param {mat4} out mat4 frustum matrix will be written into\n * @param {vec3} eye Position of the viewer\n * @param {vec3} center Point the viewer is looking at\n * @param {vec3} up vec3 pointing up\n * @returns {mat4} out\n */\nfunction lookAt(out, eye, center, up) {\n var x0 = void 0,\n x1 = void 0,\n x2 = void 0,\n y0 = void 0,\n y1 = void 0,\n y2 = void 0,\n z0 = void 0,\n z1 = void 0,\n z2 = void 0,\n len = void 0;\n var eyex = eye[0];\n var eyey = eye[1];\n var eyez = eye[2];\n var upx = up[0];\n var upy = up[1];\n var upz = up[2];\n var centerx = center[0];\n var centery = center[1];\n var centerz = center[2];\n\n if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) {\n return identity(out);\n }\n\n z0 = eyex - centerx;\n z1 = eyey - centery;\n z2 = eyez - centerz;\n\n len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);\n z0 *= len;\n z1 *= len;\n z2 *= len;\n\n x0 = upy * z2 - upz * z1;\n x1 = upz * z0 - upx * z2;\n x2 = upx * z1 - upy * z0;\n len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);\n if (!len) {\n x0 = 0;\n x1 = 0;\n x2 = 0;\n } else {\n len = 1 / len;\n x0 *= len;\n x1 *= len;\n x2 *= len;\n }\n\n y0 = z1 * x2 - z2 * x1;\n y1 = z2 * x0 - z0 * x2;\n y2 = z0 * x1 - z1 * x0;\n\n len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);\n if (!len) {\n y0 = 0;\n y1 = 0;\n y2 = 0;\n } else {\n len = 1 / len;\n y0 *= len;\n y1 *= len;\n y2 *= len;\n }\n\n out[0] = x0;\n out[1] = y0;\n out[2] = z0;\n out[3] = 0;\n out[4] = x1;\n out[5] = y1;\n out[6] = z1;\n out[7] = 0;\n out[8] = x2;\n out[9] = y2;\n out[10] = z2;\n out[11] = 0;\n out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);\n out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);\n out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);\n out[15] = 1;\n\n return out;\n}\n\n/**\n * Generates a matrix that makes something look at something else.\n *\n * @param {mat4} out mat4 frustum matrix will be written into\n * @param {vec3} eye Position of the viewer\n * @param {vec3} center Point the viewer is looking at\n * @param {vec3} up vec3 pointing up\n * @returns {mat4} out\n */\nfunction targetTo(out, eye, target, up) {\n var eyex = eye[0],\n eyey = eye[1],\n eyez = eye[2],\n upx = up[0],\n upy = up[1],\n upz = up[2];\n\n var z0 = eyex - target[0],\n z1 = eyey - target[1],\n z2 = eyez - target[2];\n\n var len = z0 * z0 + z1 * z1 + z2 * z2;\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n z0 *= len;\n z1 *= len;\n z2 *= len;\n }\n\n var x0 = upy * z2 - upz * z1,\n x1 = upz * z0 - upx * z2,\n x2 = upx * z1 - upy * z0;\n\n len = x0 * x0 + x1 * x1 + x2 * x2;\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n x0 *= len;\n x1 *= len;\n x2 *= len;\n }\n\n out[0] = x0;\n out[1] = x1;\n out[2] = x2;\n out[3] = 0;\n out[4] = z1 * x2 - z2 * x1;\n out[5] = z2 * x0 - z0 * x2;\n out[6] = z0 * x1 - z1 * x0;\n out[7] = 0;\n out[8] = z0;\n out[9] = z1;\n out[10] = z2;\n out[11] = 0;\n out[12] = eyex;\n out[13] = eyey;\n out[14] = eyez;\n out[15] = 1;\n return out;\n};\n\n/**\n * Returns a string representation of a mat4\n *\n * @param {mat4} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\nfunction str(a) {\n return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';\n}\n\n/**\n * Returns Frobenius norm of a mat4\n *\n * @param {mat4} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2));\n}\n\n/**\n * Adds two mat4's\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the first operand\n * @param {mat4} b the second operand\n * @returns {mat4} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n out[9] = a[9] + b[9];\n out[10] = a[10] + b[10];\n out[11] = a[11] + b[11];\n out[12] = a[12] + b[12];\n out[13] = a[13] + b[13];\n out[14] = a[14] + b[14];\n out[15] = a[15] + b[15];\n return out;\n}\n\n/**\n * Subtracts matrix b from matrix a\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the first operand\n * @param {mat4} b the second operand\n * @returns {mat4} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n out[9] = a[9] - b[9];\n out[10] = a[10] - b[10];\n out[11] = a[11] - b[11];\n out[12] = a[12] - b[12];\n out[13] = a[13] - b[13];\n out[14] = a[14] - b[14];\n out[15] = a[15] - b[15];\n return out;\n}\n\n/**\n * Multiply each element of the matrix by a scalar.\n *\n * @param {mat4} out the receiving matrix\n * @param {mat4} a the matrix to scale\n * @param {Number} b amount to scale the matrix's elements by\n * @returns {mat4} out\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n out[9] = a[9] * b;\n out[10] = a[10] * b;\n out[11] = a[11] * b;\n out[12] = a[12] * b;\n out[13] = a[13] * b;\n out[14] = a[14] * b;\n out[15] = a[15] * b;\n return out;\n}\n\n/**\n * Adds two mat4's after multiplying each element of the second operand by a scalar value.\n *\n * @param {mat4} out the receiving vector\n * @param {mat4} a the first operand\n * @param {mat4} b the second operand\n * @param {Number} scale the amount to scale b's elements by before adding\n * @returns {mat4} out\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n out[9] = a[9] + b[9] * scale;\n out[10] = a[10] + b[10] * scale;\n out[11] = a[11] + b[11] * scale;\n out[12] = a[12] + b[12] * scale;\n out[13] = a[13] + b[13] * scale;\n out[14] = a[14] + b[14] * scale;\n out[15] = a[15] + b[15] * scale;\n return out;\n}\n\n/**\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\n *\n * @param {mat4} a The first matrix.\n * @param {mat4} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];\n}\n\n/**\n * Returns whether or not the matrices have approximately the same elements in the same position.\n *\n * @param {mat4} a The first matrix.\n * @param {mat4} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7];\n var a8 = a[8],\n a9 = a[9],\n a10 = a[10],\n a11 = a[11];\n var a12 = a[12],\n a13 = a[13],\n a14 = a[14],\n a15 = a[15];\n\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n var b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7];\n var b8 = b[8],\n b9 = b[9],\n b10 = b[10],\n b11 = b[11];\n var b12 = b[12],\n b13 = b[13],\n b14 = b[14],\n b15 = b[15];\n\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));\n}\n\n/**\n * Alias for {@link mat4.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link mat4.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat4.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sub = exports.mul = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.identity = identity;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.translate = translate;\nexports.scale = scale;\nexports.rotate = rotate;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.fromTranslation = fromTranslation;\nexports.fromScaling = fromScaling;\nexports.fromRotation = fromRotation;\nexports.fromXRotation = fromXRotation;\nexports.fromYRotation = fromYRotation;\nexports.fromZRotation = fromZRotation;\nexports.fromRotationTranslation = fromRotationTranslation;\nexports.fromQuat2 = fromQuat2;\nexports.getTranslation = getTranslation;\nexports.getScaling = getScaling;\nexports.getRotation = getRotation;\nexports.fromRotationTranslationScale = fromRotationTranslationScale;\nexports.fromRotationTranslationScaleOrigin = fromRotationTranslationScaleOrigin;\nexports.fromQuat = fromQuat;\nexports.frustum = frustum;\nexports.perspective = perspective;\nexports.perspectiveFromFieldOfView = perspectiveFromFieldOfView;\nexports.ortho = ortho;\nexports.lookAt = lookAt;\nexports.targetTo = targetTo;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * 4x4 Matrix
Format: column-major, when typed out it looks like row-major
The matrices are being post multiplied.\r\n * @module mat4\r\n */\n\n/**\r\n * Creates a new identity mat4\r\n *\r\n * @returns {mat4} a new 4x4 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Creates a new mat4 initialized with values from an existing matrix\r\n *\r\n * @param {mat4} a matrix to clone\r\n * @returns {mat4} a new 4x4 matrix\r\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n\n/**\r\n * Copy the values from one mat4 to another\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the source matrix\r\n * @returns {mat4} out\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n\n/**\r\n * Create a new mat4 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\r\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\r\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\r\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\r\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\r\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\r\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\r\n * @returns {mat4} A new mat4\r\n */\nfunction fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n\n/**\r\n * Set the components of a mat4 to the given values\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\r\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\r\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\r\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\r\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\r\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\r\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\r\n * @returns {mat4} out\r\n */\nfunction set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n\n/**\r\n * Set a mat4 to the identity matrix\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @returns {mat4} out\r\n */\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Transpose the values of a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the source matrix\r\n * @returns {mat4} out\r\n */\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a12 = a[6],\n a13 = a[7];\n var a23 = a[11];\n\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a01;\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a02;\n out[9] = a12;\n out[11] = a[14];\n out[12] = a03;\n out[13] = a13;\n out[14] = a23;\n } else {\n out[0] = a[0];\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a[1];\n out[5] = a[5];\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a[2];\n out[9] = a[6];\n out[10] = a[10];\n out[11] = a[14];\n out[12] = a[3];\n out[13] = a[7];\n out[14] = a[11];\n out[15] = a[15];\n }\n\n return out;\n}\n\n/**\r\n * Inverts a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the source matrix\r\n * @returns {mat4} out\r\n */\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32;\n\n // Calculate the determinant\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n det = 1.0 / det;\n\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;\n out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;\n out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;\n out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;\n out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;\n out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;\n out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;\n\n return out;\n}\n\n/**\r\n * Calculates the adjugate of a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the source matrix\r\n * @returns {mat4} out\r\n */\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);\n out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));\n out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);\n out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));\n out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));\n out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);\n out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));\n out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);\n out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);\n out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));\n out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);\n out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));\n out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));\n out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);\n out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));\n out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);\n return out;\n}\n\n/**\r\n * Calculates the determinant of a mat4\r\n *\r\n * @param {mat4} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32;\n\n // Calculate the determinant\n return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n}\n\n/**\r\n * Multiplies two mat4s\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the first operand\r\n * @param {mat4} b the second operand\r\n * @returns {mat4} out\r\n */\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n\n // Cache only the current line of the second matrix\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n\n b0 = b[4];b1 = b[5];b2 = b[6];b3 = b[7];\n out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n\n b0 = b[8];b1 = b[9];b2 = b[10];b3 = b[11];\n out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n\n b0 = b[12];b1 = b[13];b2 = b[14];b3 = b[15];\n out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n return out;\n}\n\n/**\r\n * Translate a mat4 by the given vector\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the matrix to translate\r\n * @param {vec3} v vector to translate by\r\n * @returns {mat4} out\r\n */\nfunction translate(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n var a00 = void 0,\n a01 = void 0,\n a02 = void 0,\n a03 = void 0;\n var a10 = void 0,\n a11 = void 0,\n a12 = void 0,\n a13 = void 0;\n var a20 = void 0,\n a21 = void 0,\n a22 = void 0,\n a23 = void 0;\n\n if (a === out) {\n out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];\n out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];\n out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];\n out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];\n } else {\n a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];\n a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];\n a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];\n\n out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03;\n out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13;\n out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23;\n\n out[12] = a00 * x + a10 * y + a20 * z + a[12];\n out[13] = a01 * x + a11 * y + a21 * z + a[13];\n out[14] = a02 * x + a12 * y + a22 * z + a[14];\n out[15] = a03 * x + a13 * y + a23 * z + a[15];\n }\n\n return out;\n}\n\n/**\r\n * Scales the mat4 by the dimensions in the given vec3 not using vectorization\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the matrix to scale\r\n * @param {vec3} v the vec3 to scale the matrix by\r\n * @returns {mat4} out\r\n **/\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n\n out[0] = a[0] * x;\n out[1] = a[1] * x;\n out[2] = a[2] * x;\n out[3] = a[3] * x;\n out[4] = a[4] * y;\n out[5] = a[5] * y;\n out[6] = a[6] * y;\n out[7] = a[7] * y;\n out[8] = a[8] * z;\n out[9] = a[9] * z;\n out[10] = a[10] * z;\n out[11] = a[11] * z;\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n\n/**\r\n * Rotates a mat4 by the given angle around the given axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @param {vec3} axis the axis to rotate around\r\n * @returns {mat4} out\r\n */\nfunction rotate(out, a, rad, axis) {\n var x = axis[0],\n y = axis[1],\n z = axis[2];\n var len = Math.sqrt(x * x + y * y + z * z);\n var s = void 0,\n c = void 0,\n t = void 0;\n var a00 = void 0,\n a01 = void 0,\n a02 = void 0,\n a03 = void 0;\n var a10 = void 0,\n a11 = void 0,\n a12 = void 0,\n a13 = void 0;\n var a20 = void 0,\n a21 = void 0,\n a22 = void 0,\n a23 = void 0;\n var b00 = void 0,\n b01 = void 0,\n b02 = void 0;\n var b10 = void 0,\n b11 = void 0,\n b12 = void 0;\n var b20 = void 0,\n b21 = void 0,\n b22 = void 0;\n\n if (len < glMatrix.EPSILON) {\n return null;\n }\n\n len = 1 / len;\n x *= len;\n y *= len;\n z *= len;\n\n s = Math.sin(rad);\n c = Math.cos(rad);\n t = 1 - c;\n\n a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];\n a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];\n a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];\n\n // Construct the elements of the rotation matrix\n b00 = x * x * t + c;b01 = y * x * t + z * s;b02 = z * x * t - y * s;\n b10 = x * y * t - z * s;b11 = y * y * t + c;b12 = z * y * t + x * s;\n b20 = x * z * t + y * s;b21 = y * z * t - x * s;b22 = z * z * t + c;\n\n // Perform rotation-specific matrix multiplication\n out[0] = a00 * b00 + a10 * b01 + a20 * b02;\n out[1] = a01 * b00 + a11 * b01 + a21 * b02;\n out[2] = a02 * b00 + a12 * b01 + a22 * b02;\n out[3] = a03 * b00 + a13 * b01 + a23 * b02;\n out[4] = a00 * b10 + a10 * b11 + a20 * b12;\n out[5] = a01 * b10 + a11 * b11 + a21 * b12;\n out[6] = a02 * b10 + a12 * b11 + a22 * b12;\n out[7] = a03 * b10 + a13 * b11 + a23 * b12;\n out[8] = a00 * b20 + a10 * b21 + a20 * b22;\n out[9] = a01 * b20 + a11 * b21 + a21 * b22;\n out[10] = a02 * b20 + a12 * b21 + a22 * b22;\n out[11] = a03 * b20 + a13 * b21 + a23 * b22;\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged last row\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n return out;\n}\n\n/**\r\n * Rotates a matrix by the given angle around the X axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\nfunction rotateX(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a10 = a[4];\n var a11 = a[5];\n var a12 = a[6];\n var a13 = a[7];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged rows\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n // Perform axis-specific matrix multiplication\n out[4] = a10 * c + a20 * s;\n out[5] = a11 * c + a21 * s;\n out[6] = a12 * c + a22 * s;\n out[7] = a13 * c + a23 * s;\n out[8] = a20 * c - a10 * s;\n out[9] = a21 * c - a11 * s;\n out[10] = a22 * c - a12 * s;\n out[11] = a23 * c - a13 * s;\n return out;\n}\n\n/**\r\n * Rotates a matrix by the given angle around the Y axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\nfunction rotateY(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a00 = a[0];\n var a01 = a[1];\n var a02 = a[2];\n var a03 = a[3];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged rows\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n // Perform axis-specific matrix multiplication\n out[0] = a00 * c - a20 * s;\n out[1] = a01 * c - a21 * s;\n out[2] = a02 * c - a22 * s;\n out[3] = a03 * c - a23 * s;\n out[8] = a00 * s + a20 * c;\n out[9] = a01 * s + a21 * c;\n out[10] = a02 * s + a22 * c;\n out[11] = a03 * s + a23 * c;\n return out;\n}\n\n/**\r\n * Rotates a matrix by the given angle around the Z axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\nfunction rotateZ(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a00 = a[0];\n var a01 = a[1];\n var a02 = a[2];\n var a03 = a[3];\n var a10 = a[4];\n var a11 = a[5];\n var a12 = a[6];\n var a13 = a[7];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged last row\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n // Perform axis-specific matrix multiplication\n out[0] = a00 * c + a10 * s;\n out[1] = a01 * c + a11 * s;\n out[2] = a02 * c + a12 * s;\n out[3] = a03 * c + a13 * s;\n out[4] = a10 * c - a00 * s;\n out[5] = a11 * c - a01 * s;\n out[6] = a12 * c - a02 * s;\n out[7] = a13 * c - a03 * s;\n return out;\n}\n\n/**\r\n * Creates a matrix from a vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, dest, vec);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {vec3} v Translation vector\r\n * @returns {mat4} out\r\n */\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.scale(dest, dest, vec);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {vec3} v Scaling vector\r\n * @returns {mat4} out\r\n */\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = v[1];\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = v[2];\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from a given angle around a given axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotate(dest, dest, rad, axis);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @param {vec3} axis the axis to rotate around\r\n * @returns {mat4} out\r\n */\nfunction fromRotation(out, rad, axis) {\n var x = axis[0],\n y = axis[1],\n z = axis[2];\n var len = Math.sqrt(x * x + y * y + z * z);\n var s = void 0,\n c = void 0,\n t = void 0;\n\n if (len < glMatrix.EPSILON) {\n return null;\n }\n\n len = 1 / len;\n x *= len;\n y *= len;\n z *= len;\n\n s = Math.sin(rad);\n c = Math.cos(rad);\n t = 1 - c;\n\n // Perform rotation-specific matrix multiplication\n out[0] = x * x * t + c;\n out[1] = y * x * t + z * s;\n out[2] = z * x * t - y * s;\n out[3] = 0;\n out[4] = x * y * t - z * s;\n out[5] = y * y * t + c;\n out[6] = z * y * t + x * s;\n out[7] = 0;\n out[8] = x * z * t + y * s;\n out[9] = y * z * t - x * s;\n out[10] = z * z * t + c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from the given angle around the X axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotateX(dest, dest, rad);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\nfunction fromXRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n\n // Perform axis-specific matrix multiplication\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = c;\n out[6] = s;\n out[7] = 0;\n out[8] = 0;\n out[9] = -s;\n out[10] = c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from the given angle around the Y axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotateY(dest, dest, rad);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\nfunction fromYRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n\n // Perform axis-specific matrix multiplication\n out[0] = c;\n out[1] = 0;\n out[2] = -s;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = s;\n out[9] = 0;\n out[10] = c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from the given angle around the Z axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotateZ(dest, dest, rad);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\nfunction fromZRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n\n // Perform axis-specific matrix multiplication\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n out[3] = 0;\n out[4] = -s;\n out[5] = c;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Creates a matrix from a quaternion rotation and vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, vec);\r\n * let quatMat = mat4.create();\r\n * quat4.toMat4(quat, quatMat);\r\n * mat4.multiply(dest, quatMat);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {quat4} q Rotation quaternion\r\n * @param {vec3} v Translation vector\r\n * @returns {mat4} out\r\n */\nfunction fromRotationTranslation(out, q, v) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n out[0] = 1 - (yy + zz);\n out[1] = xy + wz;\n out[2] = xz - wy;\n out[3] = 0;\n out[4] = xy - wz;\n out[5] = 1 - (xx + zz);\n out[6] = yz + wx;\n out[7] = 0;\n out[8] = xz + wy;\n out[9] = yz - wx;\n out[10] = 1 - (xx + yy);\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n\n return out;\n}\n\n/**\r\n * Creates a new mat4 from a dual quat.\r\n *\r\n * @param {mat4} out Matrix\r\n * @param {quat2} a Dual Quaternion\r\n * @returns {mat4} mat4 receiving operation result\r\n */\nfunction fromQuat2(out, a) {\n var translation = new glMatrix.ARRAY_TYPE(3);\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7];\n\n var magnitude = bx * bx + by * by + bz * bz + bw * bw;\n //Only scale if it makes sense\n if (magnitude > 0) {\n translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude;\n translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude;\n translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude;\n } else {\n translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;\n translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;\n translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;\n }\n fromRotationTranslation(out, a, translation);\n return out;\n}\n\n/**\r\n * Returns the translation vector component of a transformation\r\n * matrix. If a matrix is built with fromRotationTranslation,\r\n * the returned vector will be the same as the translation vector\r\n * originally supplied.\r\n * @param {vec3} out Vector to receive translation component\r\n * @param {mat4} mat Matrix to be decomposed (input)\r\n * @return {vec3} out\r\n */\nfunction getTranslation(out, mat) {\n out[0] = mat[12];\n out[1] = mat[13];\n out[2] = mat[14];\n\n return out;\n}\n\n/**\r\n * Returns the scaling factor component of a transformation\r\n * matrix. If a matrix is built with fromRotationTranslationScale\r\n * with a normalized Quaternion paramter, the returned vector will be\r\n * the same as the scaling vector\r\n * originally supplied.\r\n * @param {vec3} out Vector to receive scaling factor component\r\n * @param {mat4} mat Matrix to be decomposed (input)\r\n * @return {vec3} out\r\n */\nfunction getScaling(out, mat) {\n var m11 = mat[0];\n var m12 = mat[1];\n var m13 = mat[2];\n var m21 = mat[4];\n var m22 = mat[5];\n var m23 = mat[6];\n var m31 = mat[8];\n var m32 = mat[9];\n var m33 = mat[10];\n\n out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);\n out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);\n out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);\n\n return out;\n}\n\n/**\r\n * Returns a quaternion representing the rotational component\r\n * of a transformation matrix. If a matrix is built with\r\n * fromRotationTranslation, the returned quaternion will be the\r\n * same as the quaternion originally supplied.\r\n * @param {quat} out Quaternion to receive the rotation component\r\n * @param {mat4} mat Matrix to be decomposed (input)\r\n * @return {quat} out\r\n */\nfunction getRotation(out, mat) {\n // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm\n var trace = mat[0] + mat[5] + mat[10];\n var S = 0;\n\n if (trace > 0) {\n S = Math.sqrt(trace + 1.0) * 2;\n out[3] = 0.25 * S;\n out[0] = (mat[6] - mat[9]) / S;\n out[1] = (mat[8] - mat[2]) / S;\n out[2] = (mat[1] - mat[4]) / S;\n } else if (mat[0] > mat[5] && mat[0] > mat[10]) {\n S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;\n out[3] = (mat[6] - mat[9]) / S;\n out[0] = 0.25 * S;\n out[1] = (mat[1] + mat[4]) / S;\n out[2] = (mat[8] + mat[2]) / S;\n } else if (mat[5] > mat[10]) {\n S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;\n out[3] = (mat[8] - mat[2]) / S;\n out[0] = (mat[1] + mat[4]) / S;\n out[1] = 0.25 * S;\n out[2] = (mat[6] + mat[9]) / S;\n } else {\n S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;\n out[3] = (mat[1] - mat[4]) / S;\n out[0] = (mat[8] + mat[2]) / S;\n out[1] = (mat[6] + mat[9]) / S;\n out[2] = 0.25 * S;\n }\n\n return out;\n}\n\n/**\r\n * Creates a matrix from a quaternion rotation, vector translation and vector scale\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, vec);\r\n * let quatMat = mat4.create();\r\n * quat4.toMat4(quat, quatMat);\r\n * mat4.multiply(dest, quatMat);\r\n * mat4.scale(dest, scale)\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {quat4} q Rotation quaternion\r\n * @param {vec3} v Translation vector\r\n * @param {vec3} s Scaling vector\r\n * @returns {mat4} out\r\n */\nfunction fromRotationTranslationScale(out, q, v, s) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n var sx = s[0];\n var sy = s[1];\n var sz = s[2];\n\n out[0] = (1 - (yy + zz)) * sx;\n out[1] = (xy + wz) * sx;\n out[2] = (xz - wy) * sx;\n out[3] = 0;\n out[4] = (xy - wz) * sy;\n out[5] = (1 - (xx + zz)) * sy;\n out[6] = (yz + wx) * sy;\n out[7] = 0;\n out[8] = (xz + wy) * sz;\n out[9] = (yz - wx) * sz;\n out[10] = (1 - (xx + yy)) * sz;\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n\n return out;\n}\n\n/**\r\n * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, vec);\r\n * mat4.translate(dest, origin);\r\n * let quatMat = mat4.create();\r\n * quat4.toMat4(quat, quatMat);\r\n * mat4.multiply(dest, quatMat);\r\n * mat4.scale(dest, scale)\r\n * mat4.translate(dest, negativeOrigin);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {quat4} q Rotation quaternion\r\n * @param {vec3} v Translation vector\r\n * @param {vec3} s Scaling vector\r\n * @param {vec3} o The origin vector around which to scale and rotate\r\n * @returns {mat4} out\r\n */\nfunction fromRotationTranslationScaleOrigin(out, q, v, s, o) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n var sx = s[0];\n var sy = s[1];\n var sz = s[2];\n\n var ox = o[0];\n var oy = o[1];\n var oz = o[2];\n\n var out0 = (1 - (yy + zz)) * sx;\n var out1 = (xy + wz) * sx;\n var out2 = (xz - wy) * sx;\n var out4 = (xy - wz) * sy;\n var out5 = (1 - (xx + zz)) * sy;\n var out6 = (yz + wx) * sy;\n var out8 = (xz + wy) * sz;\n var out9 = (yz - wx) * sz;\n var out10 = (1 - (xx + yy)) * sz;\n\n out[0] = out0;\n out[1] = out1;\n out[2] = out2;\n out[3] = 0;\n out[4] = out4;\n out[5] = out5;\n out[6] = out6;\n out[7] = 0;\n out[8] = out8;\n out[9] = out9;\n out[10] = out10;\n out[11] = 0;\n out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);\n out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);\n out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);\n out[15] = 1;\n\n return out;\n}\n\n/**\r\n * Calculates a 4x4 matrix from the given quaternion\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {quat} q Quaternion to create matrix from\r\n *\r\n * @returns {mat4} out\r\n */\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n\n out[0] = 1 - yy - zz;\n out[1] = yx + wz;\n out[2] = zx - wy;\n out[3] = 0;\n\n out[4] = yx - wz;\n out[5] = 1 - xx - zz;\n out[6] = zy + wx;\n out[7] = 0;\n\n out[8] = zx + wy;\n out[9] = zy - wx;\n out[10] = 1 - xx - yy;\n out[11] = 0;\n\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n\n return out;\n}\n\n/**\r\n * Generates a frustum matrix with the given bounds\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {Number} left Left bound of the frustum\r\n * @param {Number} right Right bound of the frustum\r\n * @param {Number} bottom Bottom bound of the frustum\r\n * @param {Number} top Top bound of the frustum\r\n * @param {Number} near Near bound of the frustum\r\n * @param {Number} far Far bound of the frustum\r\n * @returns {mat4} out\r\n */\nfunction frustum(out, left, right, bottom, top, near, far) {\n var rl = 1 / (right - left);\n var tb = 1 / (top - bottom);\n var nf = 1 / (near - far);\n out[0] = near * 2 * rl;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = near * 2 * tb;\n out[6] = 0;\n out[7] = 0;\n out[8] = (right + left) * rl;\n out[9] = (top + bottom) * tb;\n out[10] = (far + near) * nf;\n out[11] = -1;\n out[12] = 0;\n out[13] = 0;\n out[14] = far * near * 2 * nf;\n out[15] = 0;\n return out;\n}\n\n/**\r\n * Generates a perspective projection matrix with the given bounds.\r\n * Passing null/undefined/no value for far will generate infinite projection matrix.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {number} fovy Vertical field of view in radians\r\n * @param {number} aspect Aspect ratio. typically viewport width/height\r\n * @param {number} near Near bound of the frustum\r\n * @param {number} far Far bound of the frustum, can be null or Infinity\r\n * @returns {mat4} out\r\n */\nfunction perspective(out, fovy, aspect, near, far) {\n var f = 1.0 / Math.tan(fovy / 2),\n nf = void 0;\n out[0] = f / aspect;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = f;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[11] = -1;\n out[12] = 0;\n out[13] = 0;\n out[15] = 0;\n if (far != null && far !== Infinity) {\n nf = 1 / (near - far);\n out[10] = (far + near) * nf;\n out[14] = 2 * far * near * nf;\n } else {\n out[10] = -1;\n out[14] = -2 * near;\n }\n return out;\n}\n\n/**\r\n * Generates a perspective projection matrix with the given field of view.\r\n * This is primarily useful for generating projection matrices to be used\r\n * with the still experiemental WebVR API.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees\r\n * @param {number} near Near bound of the frustum\r\n * @param {number} far Far bound of the frustum\r\n * @returns {mat4} out\r\n */\nfunction perspectiveFromFieldOfView(out, fov, near, far) {\n var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);\n var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);\n var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);\n var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);\n var xScale = 2.0 / (leftTan + rightTan);\n var yScale = 2.0 / (upTan + downTan);\n\n out[0] = xScale;\n out[1] = 0.0;\n out[2] = 0.0;\n out[3] = 0.0;\n out[4] = 0.0;\n out[5] = yScale;\n out[6] = 0.0;\n out[7] = 0.0;\n out[8] = -((leftTan - rightTan) * xScale * 0.5);\n out[9] = (upTan - downTan) * yScale * 0.5;\n out[10] = far / (near - far);\n out[11] = -1.0;\n out[12] = 0.0;\n out[13] = 0.0;\n out[14] = far * near / (near - far);\n out[15] = 0.0;\n return out;\n}\n\n/**\r\n * Generates a orthogonal projection matrix with the given bounds\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {number} left Left bound of the frustum\r\n * @param {number} right Right bound of the frustum\r\n * @param {number} bottom Bottom bound of the frustum\r\n * @param {number} top Top bound of the frustum\r\n * @param {number} near Near bound of the frustum\r\n * @param {number} far Far bound of the frustum\r\n * @returns {mat4} out\r\n */\nfunction ortho(out, left, right, bottom, top, near, far) {\n var lr = 1 / (left - right);\n var bt = 1 / (bottom - top);\n var nf = 1 / (near - far);\n out[0] = -2 * lr;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = -2 * bt;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 2 * nf;\n out[11] = 0;\n out[12] = (left + right) * lr;\n out[13] = (top + bottom) * bt;\n out[14] = (far + near) * nf;\n out[15] = 1;\n return out;\n}\n\n/**\r\n * Generates a look-at matrix with the given eye position, focal point, and up axis.\r\n * If you want a matrix that actually makes an object look at another object, you should use targetTo instead.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {vec3} eye Position of the viewer\r\n * @param {vec3} center Point the viewer is looking at\r\n * @param {vec3} up vec3 pointing up\r\n * @returns {mat4} out\r\n */\nfunction lookAt(out, eye, center, up) {\n var x0 = void 0,\n x1 = void 0,\n x2 = void 0,\n y0 = void 0,\n y1 = void 0,\n y2 = void 0,\n z0 = void 0,\n z1 = void 0,\n z2 = void 0,\n len = void 0;\n var eyex = eye[0];\n var eyey = eye[1];\n var eyez = eye[2];\n var upx = up[0];\n var upy = up[1];\n var upz = up[2];\n var centerx = center[0];\n var centery = center[1];\n var centerz = center[2];\n\n if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) {\n return identity(out);\n }\n\n z0 = eyex - centerx;\n z1 = eyey - centery;\n z2 = eyez - centerz;\n\n len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);\n z0 *= len;\n z1 *= len;\n z2 *= len;\n\n x0 = upy * z2 - upz * z1;\n x1 = upz * z0 - upx * z2;\n x2 = upx * z1 - upy * z0;\n len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);\n if (!len) {\n x0 = 0;\n x1 = 0;\n x2 = 0;\n } else {\n len = 1 / len;\n x0 *= len;\n x1 *= len;\n x2 *= len;\n }\n\n y0 = z1 * x2 - z2 * x1;\n y1 = z2 * x0 - z0 * x2;\n y2 = z0 * x1 - z1 * x0;\n\n len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);\n if (!len) {\n y0 = 0;\n y1 = 0;\n y2 = 0;\n } else {\n len = 1 / len;\n y0 *= len;\n y1 *= len;\n y2 *= len;\n }\n\n out[0] = x0;\n out[1] = y0;\n out[2] = z0;\n out[3] = 0;\n out[4] = x1;\n out[5] = y1;\n out[6] = z1;\n out[7] = 0;\n out[8] = x2;\n out[9] = y2;\n out[10] = z2;\n out[11] = 0;\n out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);\n out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);\n out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);\n out[15] = 1;\n\n return out;\n}\n\n/**\r\n * Generates a matrix that makes something look at something else.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {vec3} eye Position of the viewer\r\n * @param {vec3} center Point the viewer is looking at\r\n * @param {vec3} up vec3 pointing up\r\n * @returns {mat4} out\r\n */\nfunction targetTo(out, eye, target, up) {\n var eyex = eye[0],\n eyey = eye[1],\n eyez = eye[2],\n upx = up[0],\n upy = up[1],\n upz = up[2];\n\n var z0 = eyex - target[0],\n z1 = eyey - target[1],\n z2 = eyez - target[2];\n\n var len = z0 * z0 + z1 * z1 + z2 * z2;\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n z0 *= len;\n z1 *= len;\n z2 *= len;\n }\n\n var x0 = upy * z2 - upz * z1,\n x1 = upz * z0 - upx * z2,\n x2 = upx * z1 - upy * z0;\n\n len = x0 * x0 + x1 * x1 + x2 * x2;\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n x0 *= len;\n x1 *= len;\n x2 *= len;\n }\n\n out[0] = x0;\n out[1] = x1;\n out[2] = x2;\n out[3] = 0;\n out[4] = z1 * x2 - z2 * x1;\n out[5] = z2 * x0 - z0 * x2;\n out[6] = z0 * x1 - z1 * x0;\n out[7] = 0;\n out[8] = z0;\n out[9] = z1;\n out[10] = z2;\n out[11] = 0;\n out[12] = eyex;\n out[13] = eyey;\n out[14] = eyez;\n out[15] = 1;\n return out;\n};\n\n/**\r\n * Returns a string representation of a mat4\r\n *\r\n * @param {mat4} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\nfunction str(a) {\n return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';\n}\n\n/**\r\n * Returns Frobenius norm of a mat4\r\n *\r\n * @param {mat4} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\nfunction frob(a) {\n return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2));\n}\n\n/**\r\n * Adds two mat4's\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the first operand\r\n * @param {mat4} b the second operand\r\n * @returns {mat4} out\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n out[9] = a[9] + b[9];\n out[10] = a[10] + b[10];\n out[11] = a[11] + b[11];\n out[12] = a[12] + b[12];\n out[13] = a[13] + b[13];\n out[14] = a[14] + b[14];\n out[15] = a[15] + b[15];\n return out;\n}\n\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the first operand\r\n * @param {mat4} b the second operand\r\n * @returns {mat4} out\r\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n out[9] = a[9] - b[9];\n out[10] = a[10] - b[10];\n out[11] = a[11] - b[11];\n out[12] = a[12] - b[12];\n out[13] = a[13] - b[13];\n out[14] = a[14] - b[14];\n out[15] = a[15] - b[15];\n return out;\n}\n\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {mat4} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat4} out\r\n */\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n out[9] = a[9] * b;\n out[10] = a[10] * b;\n out[11] = a[11] * b;\n out[12] = a[12] * b;\n out[13] = a[13] * b;\n out[14] = a[14] * b;\n out[15] = a[15] * b;\n return out;\n}\n\n/**\r\n * Adds two mat4's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat4} out the receiving vector\r\n * @param {mat4} a the first operand\r\n * @param {mat4} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat4} out\r\n */\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n out[9] = a[9] + b[9] * scale;\n out[10] = a[10] + b[10] * scale;\n out[11] = a[11] + b[11] * scale;\n out[12] = a[12] + b[12] * scale;\n out[13] = a[13] + b[13] * scale;\n out[14] = a[14] + b[14] * scale;\n out[15] = a[15] + b[15] * scale;\n return out;\n}\n\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {mat4} a The first matrix.\r\n * @param {mat4} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];\n}\n\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {mat4} a The first matrix.\r\n * @param {mat4} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7];\n var a8 = a[8],\n a9 = a[9],\n a10 = a[10],\n a11 = a[11];\n var a12 = a[12],\n a13 = a[13],\n a14 = a[14],\n a15 = a[15];\n\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n var b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7];\n var b8 = b[8],\n b9 = b[9],\n b10 = b[10],\n b11 = b[11];\n var b12 = b[12],\n b13 = b[13],\n b14 = b[14],\n b15 = b[15];\n\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));\n}\n\n/**\r\n * Alias for {@link mat4.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Alias for {@link mat4.subtract}\r\n * @function\r\n */\nvar sub = exports.sub = subtract;\n\n//# sourceURL=webpack:///./src/gl-matrix/mat4.js?"); /***/ }), @@ -189,7 +204,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.setAxes = exports.sqlerp = exports.rotationTo = exports.equals = exports.exactEquals = exports.normalize = exports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.lerp = exports.dot = exports.scale = exports.mul = exports.add = exports.set = exports.copy = exports.fromValues = exports.clone = undefined;\nexports.create = create;\nexports.identity = identity;\nexports.setAxisAngle = setAxisAngle;\nexports.getAxisAngle = getAxisAngle;\nexports.multiply = multiply;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.calculateW = calculateW;\nexports.slerp = slerp;\nexports.invert = invert;\nexports.conjugate = conjugate;\nexports.fromMat3 = fromMat3;\nexports.fromEuler = fromEuler;\nexports.str = str;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nvar _mat = __webpack_require__(/*! ./mat3.js */ \"./src/gl-matrix/mat3.js\");\n\nvar mat3 = _interopRequireWildcard(_mat);\n\nvar _vec = __webpack_require__(/*! ./vec3.js */ \"./src/gl-matrix/vec3.js\");\n\nvar vec3 = _interopRequireWildcard(_vec);\n\nvar _vec2 = __webpack_require__(/*! ./vec4.js */ \"./src/gl-matrix/vec4.js\");\n\nvar vec4 = _interopRequireWildcard(_vec2);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * Quaternion\n * @module quat\n */\n\n/**\n * Creates a new identity quat\n *\n * @returns {quat} a new quaternion\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\n * Set a quat to the identity quaternion\n *\n * @param {quat} out the receiving quaternion\n * @returns {quat} out\n */\nfunction identity(out) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\n * Sets a quat from the given angle and rotation axis,\n * then returns it.\n *\n * @param {quat} out the receiving quaternion\n * @param {vec3} axis the axis around which to rotate\n * @param {Number} rad the angle in radians\n * @returns {quat} out\n **/\nfunction setAxisAngle(out, axis, rad) {\n rad = rad * 0.5;\n var s = Math.sin(rad);\n out[0] = s * axis[0];\n out[1] = s * axis[1];\n out[2] = s * axis[2];\n out[3] = Math.cos(rad);\n return out;\n}\n\n/**\n * Gets the rotation axis and angle for a given\n * quaternion. If a quaternion is created with\n * setAxisAngle, this method will return the same\n * values as providied in the original parameter list\n * OR functionally equivalent values.\n * Example: The quaternion formed by axis [0, 0, 1] and\n * angle -90 is the same as the quaternion formed by\n * [0, 0, 1] and 270. This method favors the latter.\n * @param {vec3} out_axis Vector receiving the axis of rotation\n * @param {quat} q Quaternion to be decomposed\n * @return {Number} Angle, in radians, of the rotation\n */\nfunction getAxisAngle(out_axis, q) {\n var rad = Math.acos(q[3]) * 2.0;\n var s = Math.sin(rad / 2.0);\n if (s != 0.0) {\n out_axis[0] = q[0] / s;\n out_axis[1] = q[1] / s;\n out_axis[2] = q[2] / s;\n } else {\n // If s is zero, return any axis (no rotation - axis does not matter)\n out_axis[0] = 1;\n out_axis[1] = 0;\n out_axis[2] = 0;\n }\n return rad;\n}\n\n/**\n * Multiplies two quat's\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a the first operand\n * @param {quat} b the second operand\n * @returns {quat} out\n */\nfunction multiply(out, a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = b[0],\n by = b[1],\n bz = b[2],\n bw = b[3];\n\n out[0] = ax * bw + aw * bx + ay * bz - az * by;\n out[1] = ay * bw + aw * by + az * bx - ax * bz;\n out[2] = az * bw + aw * bz + ax * by - ay * bx;\n out[3] = aw * bw - ax * bx - ay * by - az * bz;\n return out;\n}\n\n/**\n * Rotates a quaternion by the given angle about the X axis\n *\n * @param {quat} out quat receiving operation result\n * @param {quat} a quat to rotate\n * @param {number} rad angle (in radians) to rotate\n * @returns {quat} out\n */\nfunction rotateX(out, a, rad) {\n rad *= 0.5;\n\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = Math.sin(rad),\n bw = Math.cos(rad);\n\n out[0] = ax * bw + aw * bx;\n out[1] = ay * bw + az * bx;\n out[2] = az * bw - ay * bx;\n out[3] = aw * bw - ax * bx;\n return out;\n}\n\n/**\n * Rotates a quaternion by the given angle about the Y axis\n *\n * @param {quat} out quat receiving operation result\n * @param {quat} a quat to rotate\n * @param {number} rad angle (in radians) to rotate\n * @returns {quat} out\n */\nfunction rotateY(out, a, rad) {\n rad *= 0.5;\n\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var by = Math.sin(rad),\n bw = Math.cos(rad);\n\n out[0] = ax * bw - az * by;\n out[1] = ay * bw + aw * by;\n out[2] = az * bw + ax * by;\n out[3] = aw * bw - ay * by;\n return out;\n}\n\n/**\n * Rotates a quaternion by the given angle about the Z axis\n *\n * @param {quat} out quat receiving operation result\n * @param {quat} a quat to rotate\n * @param {number} rad angle (in radians) to rotate\n * @returns {quat} out\n */\nfunction rotateZ(out, a, rad) {\n rad *= 0.5;\n\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bz = Math.sin(rad),\n bw = Math.cos(rad);\n\n out[0] = ax * bw + ay * bz;\n out[1] = ay * bw - ax * bz;\n out[2] = az * bw + aw * bz;\n out[3] = aw * bw - az * bz;\n return out;\n}\n\n/**\n * Calculates the W component of a quat from the X, Y, and Z components.\n * Assumes that quaternion is 1 unit in length.\n * Any existing W component will be ignored.\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a quat to calculate W component of\n * @returns {quat} out\n */\nfunction calculateW(out, a) {\n var x = a[0],\n y = a[1],\n z = a[2];\n\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));\n return out;\n}\n\n/**\n * Performs a spherical linear interpolation between two quat\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a the first operand\n * @param {quat} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {quat} out\n */\nfunction slerp(out, a, b, t) {\n // benchmarks:\n // http://jsperf.com/quaternion-slerp-implementations\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = b[0],\n by = b[1],\n bz = b[2],\n bw = b[3];\n\n var omega = void 0,\n cosom = void 0,\n sinom = void 0,\n scale0 = void 0,\n scale1 = void 0;\n\n // calc cosine\n cosom = ax * bx + ay * by + az * bz + aw * bw;\n // adjust signs (if necessary)\n if (cosom < 0.0) {\n cosom = -cosom;\n bx = -bx;\n by = -by;\n bz = -bz;\n bw = -bw;\n }\n // calculate coefficients\n if (1.0 - cosom > 0.000001) {\n // standard case (slerp)\n omega = Math.acos(cosom);\n sinom = Math.sin(omega);\n scale0 = Math.sin((1.0 - t) * omega) / sinom;\n scale1 = Math.sin(t * omega) / sinom;\n } else {\n // \"from\" and \"to\" quaternions are very close\n // ... so we can do a linear interpolation\n scale0 = 1.0 - t;\n scale1 = t;\n }\n // calculate final values\n out[0] = scale0 * ax + scale1 * bx;\n out[1] = scale0 * ay + scale1 * by;\n out[2] = scale0 * az + scale1 * bz;\n out[3] = scale0 * aw + scale1 * bw;\n\n return out;\n}\n\n/**\n * Calculates the inverse of a quat\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a quat to calculate inverse of\n * @returns {quat} out\n */\nfunction invert(out, a) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;\n var invDot = dot ? 1.0 / dot : 0;\n\n // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0\n\n out[0] = -a0 * invDot;\n out[1] = -a1 * invDot;\n out[2] = -a2 * invDot;\n out[3] = a3 * invDot;\n return out;\n}\n\n/**\n * Calculates the conjugate of a quat\n * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a quat to calculate conjugate of\n * @returns {quat} out\n */\nfunction conjugate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\n * Creates a quaternion from the given 3x3 rotation matrix.\n *\n * NOTE: The resultant quaternion is not normalized, so you should be sure\n * to renormalize the quaternion yourself where necessary.\n *\n * @param {quat} out the receiving quaternion\n * @param {mat3} m rotation matrix\n * @returns {quat} out\n * @function\n */\nfunction fromMat3(out, m) {\n // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes\n // article \"Quaternion Calculus and Fast Animation\".\n var fTrace = m[0] + m[4] + m[8];\n var fRoot = void 0;\n\n if (fTrace > 0.0) {\n // |w| > 1/2, may as well choose w > 1/2\n fRoot = Math.sqrt(fTrace + 1.0); // 2w\n out[3] = 0.5 * fRoot;\n fRoot = 0.5 / fRoot; // 1/(4w)\n out[0] = (m[5] - m[7]) * fRoot;\n out[1] = (m[6] - m[2]) * fRoot;\n out[2] = (m[1] - m[3]) * fRoot;\n } else {\n // |w| <= 1/2\n var i = 0;\n if (m[4] > m[0]) i = 1;\n if (m[8] > m[i * 3 + i]) i = 2;\n var j = (i + 1) % 3;\n var k = (i + 2) % 3;\n\n fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);\n out[i] = 0.5 * fRoot;\n fRoot = 0.5 / fRoot;\n out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;\n out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;\n out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;\n }\n\n return out;\n}\n\n/**\n * Creates a quaternion from the given euler angle x, y, z.\n *\n * @param {quat} out the receiving quaternion\n * @param {x} Angle to rotate around X axis in degrees.\n * @param {y} Angle to rotate around Y axis in degrees.\n * @param {z} Angle to rotate around Z axis in degrees.\n * @returns {quat} out\n * @function\n */\nfunction fromEuler(out, x, y, z) {\n var halfToRad = 0.5 * Math.PI / 180.0;\n x *= halfToRad;\n y *= halfToRad;\n z *= halfToRad;\n\n var sx = Math.sin(x);\n var cx = Math.cos(x);\n var sy = Math.sin(y);\n var cy = Math.cos(y);\n var sz = Math.sin(z);\n var cz = Math.cos(z);\n\n out[0] = sx * cy * cz - cx * sy * sz;\n out[1] = cx * sy * cz + sx * cy * sz;\n out[2] = cx * cy * sz - sx * sy * cz;\n out[3] = cx * cy * cz + sx * sy * sz;\n\n return out;\n}\n\n/**\n * Returns a string representation of a quatenion\n *\n * @param {quat} a vector to represent as a string\n * @returns {String} string representation of the vector\n */\nfunction str(a) {\n return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';\n}\n\n/**\n * Creates a new quat initialized with values from an existing quaternion\n *\n * @param {quat} a quaternion to clone\n * @returns {quat} a new quaternion\n * @function\n */\nvar clone = exports.clone = vec4.clone;\n\n/**\n * Creates a new quat initialized with the given values\n *\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @param {Number} w W component\n * @returns {quat} a new quaternion\n * @function\n */\nvar fromValues = exports.fromValues = vec4.fromValues;\n\n/**\n * Copy the values from one quat to another\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a the source quaternion\n * @returns {quat} out\n * @function\n */\nvar copy = exports.copy = vec4.copy;\n\n/**\n * Set the components of a quat to the given values\n *\n * @param {quat} out the receiving quaternion\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @param {Number} w W component\n * @returns {quat} out\n * @function\n */\nvar set = exports.set = vec4.set;\n\n/**\n * Adds two quat's\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a the first operand\n * @param {quat} b the second operand\n * @returns {quat} out\n * @function\n */\nvar add = exports.add = vec4.add;\n\n/**\n * Alias for {@link quat.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Scales a quat by a scalar number\n *\n * @param {quat} out the receiving vector\n * @param {quat} a the vector to scale\n * @param {Number} b amount to scale the vector by\n * @returns {quat} out\n * @function\n */\nvar scale = exports.scale = vec4.scale;\n\n/**\n * Calculates the dot product of two quat's\n *\n * @param {quat} a the first operand\n * @param {quat} b the second operand\n * @returns {Number} dot product of a and b\n * @function\n */\nvar dot = exports.dot = vec4.dot;\n\n/**\n * Performs a linear interpolation between two quat's\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a the first operand\n * @param {quat} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {quat} out\n * @function\n */\nvar lerp = exports.lerp = vec4.lerp;\n\n/**\n * Calculates the length of a quat\n *\n * @param {quat} a vector to calculate length of\n * @returns {Number} length of a\n */\nvar length = exports.length = vec4.length;\n\n/**\n * Alias for {@link quat.length}\n * @function\n */\nvar len = exports.len = length;\n\n/**\n * Calculates the squared length of a quat\n *\n * @param {quat} a vector to calculate squared length of\n * @returns {Number} squared length of a\n * @function\n */\nvar squaredLength = exports.squaredLength = vec4.squaredLength;\n\n/**\n * Alias for {@link quat.squaredLength}\n * @function\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\n * Normalize a quat\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a quaternion to normalize\n * @returns {quat} out\n * @function\n */\nvar normalize = exports.normalize = vec4.normalize;\n\n/**\n * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)\n *\n * @param {quat} a The first quaternion.\n * @param {quat} b The second quaternion.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nvar exactEquals = exports.exactEquals = vec4.exactEquals;\n\n/**\n * Returns whether or not the quaternions have approximately the same elements in the same position.\n *\n * @param {quat} a The first vector.\n * @param {quat} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nvar equals = exports.equals = vec4.equals;\n\n/**\n * Sets a quaternion to represent the shortest rotation from one\n * vector to another.\n *\n * Both vectors are assumed to be unit length.\n *\n * @param {quat} out the receiving quaternion.\n * @param {vec3} a the initial vector\n * @param {vec3} b the destination vector\n * @returns {quat} out\n */\nvar rotationTo = exports.rotationTo = function () {\n var tmpvec3 = vec3.create();\n var xUnitVec3 = vec3.fromValues(1, 0, 0);\n var yUnitVec3 = vec3.fromValues(0, 1, 0);\n\n return function (out, a, b) {\n var dot = vec3.dot(a, b);\n if (dot < -0.999999) {\n vec3.cross(tmpvec3, xUnitVec3, a);\n if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a);\n vec3.normalize(tmpvec3, tmpvec3);\n setAxisAngle(out, tmpvec3, Math.PI);\n return out;\n } else if (dot > 0.999999) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n } else {\n vec3.cross(tmpvec3, a, b);\n out[0] = tmpvec3[0];\n out[1] = tmpvec3[1];\n out[2] = tmpvec3[2];\n out[3] = 1 + dot;\n return normalize(out, out);\n }\n };\n}();\n\n/**\n * Performs a spherical linear interpolation with two control points\n *\n * @param {quat} out the receiving quaternion\n * @param {quat} a the first operand\n * @param {quat} b the second operand\n * @param {quat} c the third operand\n * @param {quat} d the fourth operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {quat} out\n */\nvar sqlerp = exports.sqlerp = function () {\n var temp1 = create();\n var temp2 = create();\n\n return function (out, a, b, c, d, t) {\n slerp(temp1, a, d, t);\n slerp(temp2, b, c, t);\n slerp(out, temp1, temp2, 2 * t * (1 - t));\n\n return out;\n };\n}();\n\n/**\n * Sets the specified quaternion with values corresponding to the given\n * axes. Each axis is a vec3 and is expected to be unit length and\n * perpendicular to all other specified axes.\n *\n * @param {vec3} view the vector representing the viewing direction\n * @param {vec3} right the vector representing the local \"right\" direction\n * @param {vec3} up the vector representing the local \"up\" direction\n * @returns {quat} out\n */\nvar setAxes = exports.setAxes = function () {\n var matr = mat3.create();\n\n return function (out, view, right, up) {\n matr[0] = right[0];\n matr[3] = right[1];\n matr[6] = right[2];\n\n matr[1] = up[0];\n matr[4] = up[1];\n matr[7] = up[2];\n\n matr[2] = -view[0];\n matr[5] = -view[1];\n matr[8] = -view[2];\n\n return normalize(out, fromMat3(out, matr));\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/quat.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.setAxes = exports.sqlerp = exports.rotationTo = exports.equals = exports.exactEquals = exports.normalize = exports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.lerp = exports.dot = exports.scale = exports.mul = exports.add = exports.set = exports.copy = exports.fromValues = exports.clone = undefined;\nexports.create = create;\nexports.identity = identity;\nexports.setAxisAngle = setAxisAngle;\nexports.getAxisAngle = getAxisAngle;\nexports.multiply = multiply;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.calculateW = calculateW;\nexports.slerp = slerp;\nexports.invert = invert;\nexports.conjugate = conjugate;\nexports.fromMat3 = fromMat3;\nexports.fromEuler = fromEuler;\nexports.str = str;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nvar _mat = __webpack_require__(/*! ./mat3.js */ \"./src/gl-matrix/mat3.js\");\n\nvar mat3 = _interopRequireWildcard(_mat);\n\nvar _vec = __webpack_require__(/*! ./vec3.js */ \"./src/gl-matrix/vec3.js\");\n\nvar vec3 = _interopRequireWildcard(_vec);\n\nvar _vec2 = __webpack_require__(/*! ./vec4.js */ \"./src/gl-matrix/vec4.js\");\n\nvar vec4 = _interopRequireWildcard(_vec2);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * Quaternion\r\n * @module quat\r\n */\n\n/**\r\n * Creates a new identity quat\r\n *\r\n * @returns {quat} a new quaternion\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\r\n * Set a quat to the identity quaternion\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @returns {quat} out\r\n */\nfunction identity(out) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n\n/**\r\n * Sets a quat from the given angle and rotation axis,\r\n * then returns it.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {vec3} axis the axis around which to rotate\r\n * @param {Number} rad the angle in radians\r\n * @returns {quat} out\r\n **/\nfunction setAxisAngle(out, axis, rad) {\n rad = rad * 0.5;\n var s = Math.sin(rad);\n out[0] = s * axis[0];\n out[1] = s * axis[1];\n out[2] = s * axis[2];\n out[3] = Math.cos(rad);\n return out;\n}\n\n/**\r\n * Gets the rotation axis and angle for a given\r\n * quaternion. If a quaternion is created with\r\n * setAxisAngle, this method will return the same\r\n * values as providied in the original parameter list\r\n * OR functionally equivalent values.\r\n * Example: The quaternion formed by axis [0, 0, 1] and\r\n * angle -90 is the same as the quaternion formed by\r\n * [0, 0, 1] and 270. This method favors the latter.\r\n * @param {vec3} out_axis Vector receiving the axis of rotation\r\n * @param {quat} q Quaternion to be decomposed\r\n * @return {Number} Angle, in radians, of the rotation\r\n */\nfunction getAxisAngle(out_axis, q) {\n var rad = Math.acos(q[3]) * 2.0;\n var s = Math.sin(rad / 2.0);\n if (s != 0.0) {\n out_axis[0] = q[0] / s;\n out_axis[1] = q[1] / s;\n out_axis[2] = q[2] / s;\n } else {\n // If s is zero, return any axis (no rotation - axis does not matter)\n out_axis[0] = 1;\n out_axis[1] = 0;\n out_axis[2] = 0;\n }\n return rad;\n}\n\n/**\r\n * Multiplies two quat's\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a the first operand\r\n * @param {quat} b the second operand\r\n * @returns {quat} out\r\n */\nfunction multiply(out, a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = b[0],\n by = b[1],\n bz = b[2],\n bw = b[3];\n\n out[0] = ax * bw + aw * bx + ay * bz - az * by;\n out[1] = ay * bw + aw * by + az * bx - ax * bz;\n out[2] = az * bw + aw * bz + ax * by - ay * bx;\n out[3] = aw * bw - ax * bx - ay * by - az * bz;\n return out;\n}\n\n/**\r\n * Rotates a quaternion by the given angle about the X axis\r\n *\r\n * @param {quat} out quat receiving operation result\r\n * @param {quat} a quat to rotate\r\n * @param {number} rad angle (in radians) to rotate\r\n * @returns {quat} out\r\n */\nfunction rotateX(out, a, rad) {\n rad *= 0.5;\n\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = Math.sin(rad),\n bw = Math.cos(rad);\n\n out[0] = ax * bw + aw * bx;\n out[1] = ay * bw + az * bx;\n out[2] = az * bw - ay * bx;\n out[3] = aw * bw - ax * bx;\n return out;\n}\n\n/**\r\n * Rotates a quaternion by the given angle about the Y axis\r\n *\r\n * @param {quat} out quat receiving operation result\r\n * @param {quat} a quat to rotate\r\n * @param {number} rad angle (in radians) to rotate\r\n * @returns {quat} out\r\n */\nfunction rotateY(out, a, rad) {\n rad *= 0.5;\n\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var by = Math.sin(rad),\n bw = Math.cos(rad);\n\n out[0] = ax * bw - az * by;\n out[1] = ay * bw + aw * by;\n out[2] = az * bw + ax * by;\n out[3] = aw * bw - ay * by;\n return out;\n}\n\n/**\r\n * Rotates a quaternion by the given angle about the Z axis\r\n *\r\n * @param {quat} out quat receiving operation result\r\n * @param {quat} a quat to rotate\r\n * @param {number} rad angle (in radians) to rotate\r\n * @returns {quat} out\r\n */\nfunction rotateZ(out, a, rad) {\n rad *= 0.5;\n\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bz = Math.sin(rad),\n bw = Math.cos(rad);\n\n out[0] = ax * bw + ay * bz;\n out[1] = ay * bw - ax * bz;\n out[2] = az * bw + aw * bz;\n out[3] = aw * bw - az * bz;\n return out;\n}\n\n/**\r\n * Calculates the W component of a quat from the X, Y, and Z components.\r\n * Assumes that quaternion is 1 unit in length.\r\n * Any existing W component will be ignored.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a quat to calculate W component of\r\n * @returns {quat} out\r\n */\nfunction calculateW(out, a) {\n var x = a[0],\n y = a[1],\n z = a[2];\n\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));\n return out;\n}\n\n/**\r\n * Performs a spherical linear interpolation between two quat\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a the first operand\r\n * @param {quat} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat} out\r\n */\nfunction slerp(out, a, b, t) {\n // benchmarks:\n // http://jsperf.com/quaternion-slerp-implementations\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = b[0],\n by = b[1],\n bz = b[2],\n bw = b[3];\n\n var omega = void 0,\n cosom = void 0,\n sinom = void 0,\n scale0 = void 0,\n scale1 = void 0;\n\n // calc cosine\n cosom = ax * bx + ay * by + az * bz + aw * bw;\n // adjust signs (if necessary)\n if (cosom < 0.0) {\n cosom = -cosom;\n bx = -bx;\n by = -by;\n bz = -bz;\n bw = -bw;\n }\n // calculate coefficients\n if (1.0 - cosom > 0.000001) {\n // standard case (slerp)\n omega = Math.acos(cosom);\n sinom = Math.sin(omega);\n scale0 = Math.sin((1.0 - t) * omega) / sinom;\n scale1 = Math.sin(t * omega) / sinom;\n } else {\n // \"from\" and \"to\" quaternions are very close\n // ... so we can do a linear interpolation\n scale0 = 1.0 - t;\n scale1 = t;\n }\n // calculate final values\n out[0] = scale0 * ax + scale1 * bx;\n out[1] = scale0 * ay + scale1 * by;\n out[2] = scale0 * az + scale1 * bz;\n out[3] = scale0 * aw + scale1 * bw;\n\n return out;\n}\n\n/**\r\n * Calculates the inverse of a quat\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a quat to calculate inverse of\r\n * @returns {quat} out\r\n */\nfunction invert(out, a) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;\n var invDot = dot ? 1.0 / dot : 0;\n\n // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0\n\n out[0] = -a0 * invDot;\n out[1] = -a1 * invDot;\n out[2] = -a2 * invDot;\n out[3] = a3 * invDot;\n return out;\n}\n\n/**\r\n * Calculates the conjugate of a quat\r\n * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a quat to calculate conjugate of\r\n * @returns {quat} out\r\n */\nfunction conjugate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\r\n * Creates a quaternion from the given 3x3 rotation matrix.\r\n *\r\n * NOTE: The resultant quaternion is not normalized, so you should be sure\r\n * to renormalize the quaternion yourself where necessary.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {mat3} m rotation matrix\r\n * @returns {quat} out\r\n * @function\r\n */\nfunction fromMat3(out, m) {\n // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes\n // article \"Quaternion Calculus and Fast Animation\".\n var fTrace = m[0] + m[4] + m[8];\n var fRoot = void 0;\n\n if (fTrace > 0.0) {\n // |w| > 1/2, may as well choose w > 1/2\n fRoot = Math.sqrt(fTrace + 1.0); // 2w\n out[3] = 0.5 * fRoot;\n fRoot = 0.5 / fRoot; // 1/(4w)\n out[0] = (m[5] - m[7]) * fRoot;\n out[1] = (m[6] - m[2]) * fRoot;\n out[2] = (m[1] - m[3]) * fRoot;\n } else {\n // |w| <= 1/2\n var i = 0;\n if (m[4] > m[0]) i = 1;\n if (m[8] > m[i * 3 + i]) i = 2;\n var j = (i + 1) % 3;\n var k = (i + 2) % 3;\n\n fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);\n out[i] = 0.5 * fRoot;\n fRoot = 0.5 / fRoot;\n out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;\n out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;\n out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;\n }\n\n return out;\n}\n\n/**\r\n * Creates a quaternion from the given euler angle x, y, z.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {x} Angle to rotate around X axis in degrees.\r\n * @param {y} Angle to rotate around Y axis in degrees.\r\n * @param {z} Angle to rotate around Z axis in degrees.\r\n * @returns {quat} out\r\n * @function\r\n */\nfunction fromEuler(out, x, y, z) {\n var halfToRad = 0.5 * Math.PI / 180.0;\n x *= halfToRad;\n y *= halfToRad;\n z *= halfToRad;\n\n var sx = Math.sin(x);\n var cx = Math.cos(x);\n var sy = Math.sin(y);\n var cy = Math.cos(y);\n var sz = Math.sin(z);\n var cz = Math.cos(z);\n\n out[0] = sx * cy * cz - cx * sy * sz;\n out[1] = cx * sy * cz + sx * cy * sz;\n out[2] = cx * cy * sz - sx * sy * cz;\n out[3] = cx * cy * cz + sx * sy * sz;\n\n return out;\n}\n\n/**\r\n * Returns a string representation of a quatenion\r\n *\r\n * @param {quat} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\nfunction str(a) {\n return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';\n}\n\n/**\r\n * Creates a new quat initialized with values from an existing quaternion\r\n *\r\n * @param {quat} a quaternion to clone\r\n * @returns {quat} a new quaternion\r\n * @function\r\n */\nvar clone = exports.clone = vec4.clone;\n\n/**\r\n * Creates a new quat initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {quat} a new quaternion\r\n * @function\r\n */\nvar fromValues = exports.fromValues = vec4.fromValues;\n\n/**\r\n * Copy the values from one quat to another\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a the source quaternion\r\n * @returns {quat} out\r\n * @function\r\n */\nvar copy = exports.copy = vec4.copy;\n\n/**\r\n * Set the components of a quat to the given values\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {quat} out\r\n * @function\r\n */\nvar set = exports.set = vec4.set;\n\n/**\r\n * Adds two quat's\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a the first operand\r\n * @param {quat} b the second operand\r\n * @returns {quat} out\r\n * @function\r\n */\nvar add = exports.add = vec4.add;\n\n/**\r\n * Alias for {@link quat.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Scales a quat by a scalar number\r\n *\r\n * @param {quat} out the receiving vector\r\n * @param {quat} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {quat} out\r\n * @function\r\n */\nvar scale = exports.scale = vec4.scale;\n\n/**\r\n * Calculates the dot product of two quat's\r\n *\r\n * @param {quat} a the first operand\r\n * @param {quat} b the second operand\r\n * @returns {Number} dot product of a and b\r\n * @function\r\n */\nvar dot = exports.dot = vec4.dot;\n\n/**\r\n * Performs a linear interpolation between two quat's\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a the first operand\r\n * @param {quat} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat} out\r\n * @function\r\n */\nvar lerp = exports.lerp = vec4.lerp;\n\n/**\r\n * Calculates the length of a quat\r\n *\r\n * @param {quat} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\nvar length = exports.length = vec4.length;\n\n/**\r\n * Alias for {@link quat.length}\r\n * @function\r\n */\nvar len = exports.len = length;\n\n/**\r\n * Calculates the squared length of a quat\r\n *\r\n * @param {quat} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n * @function\r\n */\nvar squaredLength = exports.squaredLength = vec4.squaredLength;\n\n/**\r\n * Alias for {@link quat.squaredLength}\r\n * @function\r\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\r\n * Normalize a quat\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a quaternion to normalize\r\n * @returns {quat} out\r\n * @function\r\n */\nvar normalize = exports.normalize = vec4.normalize;\n\n/**\r\n * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {quat} a The first quaternion.\r\n * @param {quat} b The second quaternion.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nvar exactEquals = exports.exactEquals = vec4.exactEquals;\n\n/**\r\n * Returns whether or not the quaternions have approximately the same elements in the same position.\r\n *\r\n * @param {quat} a The first vector.\r\n * @param {quat} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nvar equals = exports.equals = vec4.equals;\n\n/**\r\n * Sets a quaternion to represent the shortest rotation from one\r\n * vector to another.\r\n *\r\n * Both vectors are assumed to be unit length.\r\n *\r\n * @param {quat} out the receiving quaternion.\r\n * @param {vec3} a the initial vector\r\n * @param {vec3} b the destination vector\r\n * @returns {quat} out\r\n */\nvar rotationTo = exports.rotationTo = function () {\n var tmpvec3 = vec3.create();\n var xUnitVec3 = vec3.fromValues(1, 0, 0);\n var yUnitVec3 = vec3.fromValues(0, 1, 0);\n\n return function (out, a, b) {\n var dot = vec3.dot(a, b);\n if (dot < -0.999999) {\n vec3.cross(tmpvec3, xUnitVec3, a);\n if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a);\n vec3.normalize(tmpvec3, tmpvec3);\n setAxisAngle(out, tmpvec3, Math.PI);\n return out;\n } else if (dot > 0.999999) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n } else {\n vec3.cross(tmpvec3, a, b);\n out[0] = tmpvec3[0];\n out[1] = tmpvec3[1];\n out[2] = tmpvec3[2];\n out[3] = 1 + dot;\n return normalize(out, out);\n }\n };\n}();\n\n/**\r\n * Performs a spherical linear interpolation with two control points\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {quat} a the first operand\r\n * @param {quat} b the second operand\r\n * @param {quat} c the third operand\r\n * @param {quat} d the fourth operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat} out\r\n */\nvar sqlerp = exports.sqlerp = function () {\n var temp1 = create();\n var temp2 = create();\n\n return function (out, a, b, c, d, t) {\n slerp(temp1, a, d, t);\n slerp(temp2, b, c, t);\n slerp(out, temp1, temp2, 2 * t * (1 - t));\n\n return out;\n };\n}();\n\n/**\r\n * Sets the specified quaternion with values corresponding to the given\r\n * axes. Each axis is a vec3 and is expected to be unit length and\r\n * perpendicular to all other specified axes.\r\n *\r\n * @param {vec3} view the vector representing the viewing direction\r\n * @param {vec3} right the vector representing the local \"right\" direction\r\n * @param {vec3} up the vector representing the local \"up\" direction\r\n * @returns {quat} out\r\n */\nvar setAxes = exports.setAxes = function () {\n var matr = mat3.create();\n\n return function (out, view, right, up) {\n matr[0] = right[0];\n matr[3] = right[1];\n matr[6] = right[2];\n\n matr[1] = up[0];\n matr[4] = up[1];\n matr[7] = up[2];\n\n matr[2] = -view[0];\n matr[5] = -view[1];\n matr[8] = -view[2];\n\n return normalize(out, fromMat3(out, matr));\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/quat.js?"); /***/ }), @@ -201,7 +216,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.dot = exports.mul = exports.setReal = exports.getReal = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.fromRotationTranslationValues = fromRotationTranslationValues;\nexports.fromRotationTranslation = fromRotationTranslation;\nexports.fromTranslation = fromTranslation;\nexports.fromRotation = fromRotation;\nexports.fromMat4 = fromMat4;\nexports.copy = copy;\nexports.identity = identity;\nexports.set = set;\nexports.getDual = getDual;\nexports.setDual = setDual;\nexports.getTranslation = getTranslation;\nexports.translate = translate;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.rotateByQuatAppend = rotateByQuatAppend;\nexports.rotateByQuatPrepend = rotateByQuatPrepend;\nexports.rotateAroundAxis = rotateAroundAxis;\nexports.add = add;\nexports.multiply = multiply;\nexports.scale = scale;\nexports.lerp = lerp;\nexports.invert = invert;\nexports.conjugate = conjugate;\nexports.normalize = normalize;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nvar _quat = __webpack_require__(/*! ./quat.js */ \"./src/gl-matrix/quat.js\");\n\nvar quat = _interopRequireWildcard(_quat);\n\nvar _mat = __webpack_require__(/*! ./mat4.js */ \"./src/gl-matrix/mat4.js\");\n\nvar mat4 = _interopRequireWildcard(_mat);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * Dual Quaternion
\n * Format: [real, dual]
\n * Quaternion format: XYZW
\n * Make sure to have normalized dual quaternions, otherwise the functions may not work as intended.
\n * @module quat2\n */\n\n/**\n * Creates a new identity dual quat\n *\n * @returns {quat2} a new dual quaternion [real -> rotation, dual -> translation]\n */\nfunction create() {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = 0;\n dq[1] = 0;\n dq[2] = 0;\n dq[3] = 1;\n dq[4] = 0;\n dq[5] = 0;\n dq[6] = 0;\n dq[7] = 0;\n return dq;\n}\n\n/**\n * Creates a new quat initialized with values from an existing quaternion\n *\n * @param {quat2} a dual quaternion to clone\n * @returns {quat2} new dual quaternion\n * @function\n */\nfunction clone(a) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = a[0];\n dq[1] = a[1];\n dq[2] = a[2];\n dq[3] = a[3];\n dq[4] = a[4];\n dq[5] = a[5];\n dq[6] = a[6];\n dq[7] = a[7];\n return dq;\n}\n\n/**\n * Creates a new dual quat initialized with the given values\n *\n * @param {Number} x1 X component\n * @param {Number} y1 Y component\n * @param {Number} z1 Z component\n * @param {Number} w1 W component\n * @param {Number} x2 X component\n * @param {Number} y2 Y component\n * @param {Number} z2 Z component\n * @param {Number} w2 W component\n * @returns {quat2} new dual quaternion\n * @function\n */\nfunction fromValues(x1, y1, z1, w1, x2, y2, z2, w2) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = x1;\n dq[1] = y1;\n dq[2] = z1;\n dq[3] = w1;\n dq[4] = x2;\n dq[5] = y2;\n dq[6] = z2;\n dq[7] = w2;\n return dq;\n}\n\n/**\n * Creates a new dual quat from the given values (quat and translation)\n *\n * @param {Number} x1 X component\n * @param {Number} y1 Y component\n * @param {Number} z1 Z component\n * @param {Number} w1 W component\n * @param {Number} x2 X component (translation)\n * @param {Number} y2 Y component (translation)\n * @param {Number} z2 Z component (translation)\n * @returns {quat2} new dual quaternion\n * @function\n */\nfunction fromRotationTranslationValues(x1, y1, z1, w1, x2, y2, z2) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = x1;\n dq[1] = y1;\n dq[2] = z1;\n dq[3] = w1;\n var ax = x2 * 0.5,\n ay = y2 * 0.5,\n az = z2 * 0.5;\n dq[4] = ax * w1 + ay * z1 - az * y1;\n dq[5] = ay * w1 + az * x1 - ax * z1;\n dq[6] = az * w1 + ax * y1 - ay * x1;\n dq[7] = -ax * x1 - ay * y1 - az * z1;\n return dq;\n}\n\n/**\n * Creates a dual quat from a quaternion and a translation\n *\n * @param {quat2} dual quaternion receiving operation result\n * @param {quat} q quaternion\n * @param {vec3} t tranlation vector\n * @returns {quat2} dual quaternion receiving operation result\n * @function\n */\nfunction fromRotationTranslation(out, q, t) {\n var ax = t[0] * 0.5,\n ay = t[1] * 0.5,\n az = t[2] * 0.5,\n bx = q[0],\n by = q[1],\n bz = q[2],\n bw = q[3];\n out[0] = bx;\n out[1] = by;\n out[2] = bz;\n out[3] = bw;\n out[4] = ax * bw + ay * bz - az * by;\n out[5] = ay * bw + az * bx - ax * bz;\n out[6] = az * bw + ax * by - ay * bx;\n out[7] = -ax * bx - ay * by - az * bz;\n return out;\n}\n\n/**\n * Creates a dual quat from a translation\n *\n * @param {quat2} dual quaternion receiving operation result\n * @param {vec3} t translation vector\n * @returns {quat2} dual quaternion receiving operation result\n * @function\n */\nfunction fromTranslation(out, t) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = t[0] * 0.5;\n out[5] = t[1] * 0.5;\n out[6] = t[2] * 0.5;\n out[7] = 0;\n return out;\n}\n\n/**\n * Creates a dual quat from a quaternion\n *\n * @param {quat2} dual quaternion receiving operation result\n * @param {quat} q the quaternion\n * @returns {quat2} dual quaternion receiving operation result\n * @function\n */\nfunction fromRotation(out, q) {\n out[0] = q[0];\n out[1] = q[1];\n out[2] = q[2];\n out[3] = q[3];\n out[4] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n return out;\n}\n\n/**\n * Creates a new dual quat from a matrix (4x4)\n *\n * @param {quat2} out the dual quaternion\n * @param {mat4} a the matrix\n * @returns {quat2} dual quat receiving operation result\n * @function\n */\nfunction fromMat4(out, a) {\n //TODO Optimize this\n var outer = quat.create();\n mat4.getRotation(outer, a);\n var t = new glMatrix.ARRAY_TYPE(3);\n mat4.getTranslation(t, a);\n fromRotationTranslation(out, outer, t);\n return out;\n}\n\n/**\n * Copy the values from one dual quat to another\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the source dual quaternion\n * @returns {quat2} out\n * @function\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n return out;\n}\n\n/**\n * Set a dual quat to the identity dual quaternion\n *\n * @param {quat2} out the receiving quaternion\n * @returns {quat2} out\n */\nfunction identity(out) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n return out;\n}\n\n/**\n * Set the components of a dual quat to the given values\n *\n * @param {quat2} out the receiving quaternion\n * @param {Number} x1 X component\n * @param {Number} y1 Y component\n * @param {Number} z1 Z component\n * @param {Number} w1 W component\n * @param {Number} x2 X component\n * @param {Number} y2 Y component\n * @param {Number} z2 Z component\n * @param {Number} w2 W component\n * @returns {quat2} out\n * @function\n */\nfunction set(out, x1, y1, z1, w1, x2, y2, z2, w2) {\n out[0] = x1;\n out[1] = y1;\n out[2] = z1;\n out[3] = w1;\n\n out[4] = x2;\n out[5] = y2;\n out[6] = z2;\n out[7] = w2;\n return out;\n}\n\n/**\n * Gets the real part of a dual quat\n * @param {quat} out real part\n * @param {quat2} a Dual Quaternion\n * @return {quat} real part\n */\nvar getReal = exports.getReal = quat.copy;\n\n/**\n * Gets the dual part of a dual quat\n * @param {quat} out dual part\n * @param {quat2} a Dual Quaternion\n * @return {quat} dual part\n */\nfunction getDual(out, a) {\n out[0] = a[4];\n out[1] = a[5];\n out[2] = a[6];\n out[3] = a[7];\n return out;\n}\n\n/**\n * Set the real component of a dual quat to the given quaternion\n *\n * @param {quat2} out the receiving quaternion\n * @param {quat} q a quaternion representing the real part\n * @returns {quat2} out\n * @function\n */\nvar setReal = exports.setReal = quat.copy;\n\n/**\n * Set the dual component of a dual quat to the given quaternion\n *\n * @param {quat2} out the receiving quaternion\n * @param {quat} q a quaternion representing the dual part\n * @returns {quat2} out\n * @function\n */\nfunction setDual(out, q) {\n out[4] = q[0];\n out[5] = q[1];\n out[6] = q[2];\n out[7] = q[3];\n return out;\n}\n\n/**\n * Gets the translation of a normalized dual quat\n * @param {vec3} out translation\n * @param {quat2} a Dual Quaternion to be decomposed\n * @return {vec3} translation\n */\nfunction getTranslation(out, a) {\n var ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3];\n out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;\n out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;\n out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;\n return out;\n}\n\n/**\n * Translates a dual quat by the given vector\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the dual quaternion to translate\n * @param {vec3} v vector to translate by\n * @returns {quat2} out\n */\nfunction translate(out, a, v) {\n var ax1 = a[0],\n ay1 = a[1],\n az1 = a[2],\n aw1 = a[3],\n bx1 = v[0] * 0.5,\n by1 = v[1] * 0.5,\n bz1 = v[2] * 0.5,\n ax2 = a[4],\n ay2 = a[5],\n az2 = a[6],\n aw2 = a[7];\n out[0] = ax1;\n out[1] = ay1;\n out[2] = az1;\n out[3] = aw1;\n out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2;\n out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2;\n out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2;\n out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2;\n return out;\n}\n\n/**\n * Rotates a dual quat around the X axis\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the dual quaternion to rotate\n * @param {number} rad how far should the rotation be\n * @returns {quat2} out\n */\nfunction rotateX(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateX(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n\n/**\n * Rotates a dual quat around the Y axis\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the dual quaternion to rotate\n * @param {number} rad how far should the rotation be\n * @returns {quat2} out\n */\nfunction rotateY(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateY(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n\n/**\n * Rotates a dual quat around the Z axis\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the dual quaternion to rotate\n * @param {number} rad how far should the rotation be\n * @returns {quat2} out\n */\nfunction rotateZ(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateZ(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n\n/**\n * Rotates a dual quat by a given quaternion (a * q)\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the dual quaternion to rotate\n * @param {quat} q quaternion to rotate by\n * @returns {quat2} out\n */\nfunction rotateByQuatAppend(out, a, q) {\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3],\n ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n\n out[0] = ax * qw + aw * qx + ay * qz - az * qy;\n out[1] = ay * qw + aw * qy + az * qx - ax * qz;\n out[2] = az * qw + aw * qz + ax * qy - ay * qx;\n out[3] = aw * qw - ax * qx - ay * qy - az * qz;\n ax = a[4];\n ay = a[5];\n az = a[6];\n aw = a[7];\n out[4] = ax * qw + aw * qx + ay * qz - az * qy;\n out[5] = ay * qw + aw * qy + az * qx - ax * qz;\n out[6] = az * qw + aw * qz + ax * qy - ay * qx;\n out[7] = aw * qw - ax * qx - ay * qy - az * qz;\n return out;\n}\n\n/**\n * Rotates a dual quat by a given quaternion (q * a)\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat} q quaternion to rotate by\n * @param {quat2} a the dual quaternion to rotate\n * @returns {quat2} out\n */\nfunction rotateByQuatPrepend(out, q, a) {\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3],\n bx = a[0],\n by = a[1],\n bz = a[2],\n bw = a[3];\n\n out[0] = qx * bw + qw * bx + qy * bz - qz * by;\n out[1] = qy * bw + qw * by + qz * bx - qx * bz;\n out[2] = qz * bw + qw * bz + qx * by - qy * bx;\n out[3] = qw * bw - qx * bx - qy * by - qz * bz;\n bx = a[4];\n by = a[5];\n bz = a[6];\n bw = a[7];\n out[4] = qx * bw + qw * bx + qy * bz - qz * by;\n out[5] = qy * bw + qw * by + qz * bx - qx * bz;\n out[6] = qz * bw + qw * bz + qx * by - qy * bx;\n out[7] = qw * bw - qx * bx - qy * by - qz * bz;\n return out;\n}\n\n/**\n * Rotates a dual quat around a given axis. Does the normalisation automatically\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the dual quaternion to rotate\n * @param {vec3} axis the axis to rotate around\n * @param {Number} rad how far the rotation should be\n * @returns {quat2} out\n */\nfunction rotateAroundAxis(out, a, axis, rad) {\n //Special case for rad = 0\n if (Math.abs(rad) < glMatrix.EPSILON) {\n return copy(out, a);\n }\n var axisLength = Math.sqrt(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);\n\n rad = rad * 0.5;\n var s = Math.sin(rad);\n var bx = s * axis[0] / axisLength;\n var by = s * axis[1] / axisLength;\n var bz = s * axis[2] / axisLength;\n var bw = Math.cos(rad);\n\n var ax1 = a[0],\n ay1 = a[1],\n az1 = a[2],\n aw1 = a[3];\n out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n\n var ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7];\n out[4] = ax * bw + aw * bx + ay * bz - az * by;\n out[5] = ay * bw + aw * by + az * bx - ax * bz;\n out[6] = az * bw + aw * bz + ax * by - ay * bx;\n out[7] = aw * bw - ax * bx - ay * by - az * bz;\n\n return out;\n}\n\n/**\n * Adds two dual quat's\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the first operand\n * @param {quat2} b the second operand\n * @returns {quat2} out\n * @function\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n return out;\n}\n\n/**\n * Multiplies two dual quat's\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a the first operand\n * @param {quat2} b the second operand\n * @returns {quat2} out\n */\nfunction multiply(out, a, b) {\n var ax0 = a[0],\n ay0 = a[1],\n az0 = a[2],\n aw0 = a[3],\n bx1 = b[4],\n by1 = b[5],\n bz1 = b[6],\n bw1 = b[7],\n ax1 = a[4],\n ay1 = a[5],\n az1 = a[6],\n aw1 = a[7],\n bx0 = b[0],\n by0 = b[1],\n bz0 = b[2],\n bw0 = b[3];\n out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0;\n out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0;\n out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0;\n out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0;\n out[4] = ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0;\n out[5] = ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0;\n out[6] = az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0;\n out[7] = aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0;\n return out;\n}\n\n/**\n * Alias for {@link quat2.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Scales a dual quat by a scalar number\n *\n * @param {quat2} out the receiving dual quat\n * @param {quat2} a the dual quat to scale\n * @param {Number} b amount to scale the dual quat by\n * @returns {quat2} out\n * @function\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n return out;\n}\n\n/**\n * Calculates the dot product of two dual quat's (The dot product of the real parts)\n *\n * @param {quat2} a the first operand\n * @param {quat2} b the second operand\n * @returns {Number} dot product of a and b\n * @function\n */\nvar dot = exports.dot = quat.dot;\n\n/**\n * Performs a linear interpolation between two dual quats's\n * NOTE: The resulting dual quaternions won't always be normalized (The error is most noticeable when t = 0.5)\n *\n * @param {quat2} out the receiving dual quat\n * @param {quat2} a the first operand\n * @param {quat2} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {quat2} out\n */\nfunction lerp(out, a, b, t) {\n var mt = 1 - t;\n if (dot(a, b) < 0) t = -t;\n\n out[0] = a[0] * mt + b[0] * t;\n out[1] = a[1] * mt + b[1] * t;\n out[2] = a[2] * mt + b[2] * t;\n out[3] = a[3] * mt + b[3] * t;\n out[4] = a[4] * mt + b[4] * t;\n out[5] = a[5] * mt + b[5] * t;\n out[6] = a[6] * mt + b[6] * t;\n out[7] = a[7] * mt + b[7] * t;\n\n return out;\n}\n\n/**\n * Calculates the inverse of a dual quat. If they are normalized, conjugate is cheaper\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a dual quat to calculate inverse of\n * @returns {quat2} out\n */\nfunction invert(out, a) {\n var sqlen = squaredLength(a);\n out[0] = -a[0] / sqlen;\n out[1] = -a[1] / sqlen;\n out[2] = -a[2] / sqlen;\n out[3] = a[3] / sqlen;\n out[4] = -a[4] / sqlen;\n out[5] = -a[5] / sqlen;\n out[6] = -a[6] / sqlen;\n out[7] = a[7] / sqlen;\n return out;\n}\n\n/**\n * Calculates the conjugate of a dual quat\n * If the dual quaternion is normalized, this function is faster than quat2.inverse and produces the same result.\n *\n * @param {quat2} out the receiving quaternion\n * @param {quat2} a quat to calculate conjugate of\n * @returns {quat2} out\n */\nfunction conjugate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a[3];\n out[4] = -a[4];\n out[5] = -a[5];\n out[6] = -a[6];\n out[7] = a[7];\n return out;\n}\n\n/**\n * Calculates the length of a dual quat\n *\n * @param {quat2} a dual quat to calculate length of\n * @returns {Number} length of a\n * @function\n */\nvar length = exports.length = quat.length;\n\n/**\n * Alias for {@link quat2.length}\n * @function\n */\nvar len = exports.len = length;\n\n/**\n * Calculates the squared length of a dual quat\n *\n * @param {quat2} a dual quat to calculate squared length of\n * @returns {Number} squared length of a\n * @function\n */\nvar squaredLength = exports.squaredLength = quat.squaredLength;\n\n/**\n * Alias for {@link quat2.squaredLength}\n * @function\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\n * Normalize a dual quat\n *\n * @param {quat2} out the receiving dual quaternion\n * @param {quat2} a dual quaternion to normalize\n * @returns {quat2} out\n * @function\n */\nfunction normalize(out, a) {\n var magnitude = squaredLength(a);\n if (magnitude > 0) {\n magnitude = Math.sqrt(magnitude);\n out[0] = a[0] / magnitude;\n out[1] = a[1] / magnitude;\n out[2] = a[2] / magnitude;\n out[3] = a[3] / magnitude;\n out[4] = a[4] / magnitude;\n out[5] = a[5] / magnitude;\n out[6] = a[6] / magnitude;\n out[7] = a[7] / magnitude;\n }\n return out;\n}\n\n/**\n * Returns a string representation of a dual quatenion\n *\n * @param {quat2} a dual quaternion to represent as a string\n * @returns {String} string representation of the dual quat\n */\nfunction str(a) {\n return 'quat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ')';\n}\n\n/**\n * Returns whether or not the dual quaternions have exactly the same elements in the same position (when compared with ===)\n *\n * @param {quat2} a the first dual quaternion.\n * @param {quat2} b the second dual quaternion.\n * @returns {Boolean} true if the dual quaternions are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7];\n}\n\n/**\n * Returns whether or not the dual quaternions have approximately the same elements in the same position.\n *\n * @param {quat2} a the first dual quat.\n * @param {quat2} b the second dual quat.\n * @returns {Boolean} true if the dual quats are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7));\n}\n\n//# sourceURL=webpack:///./src/gl-matrix/quat2.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.dot = exports.mul = exports.setReal = exports.getReal = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.fromRotationTranslationValues = fromRotationTranslationValues;\nexports.fromRotationTranslation = fromRotationTranslation;\nexports.fromTranslation = fromTranslation;\nexports.fromRotation = fromRotation;\nexports.fromMat4 = fromMat4;\nexports.copy = copy;\nexports.identity = identity;\nexports.set = set;\nexports.getDual = getDual;\nexports.setDual = setDual;\nexports.getTranslation = getTranslation;\nexports.translate = translate;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.rotateByQuatAppend = rotateByQuatAppend;\nexports.rotateByQuatPrepend = rotateByQuatPrepend;\nexports.rotateAroundAxis = rotateAroundAxis;\nexports.add = add;\nexports.multiply = multiply;\nexports.scale = scale;\nexports.lerp = lerp;\nexports.invert = invert;\nexports.conjugate = conjugate;\nexports.normalize = normalize;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nvar _quat = __webpack_require__(/*! ./quat.js */ \"./src/gl-matrix/quat.js\");\n\nvar quat = _interopRequireWildcard(_quat);\n\nvar _mat = __webpack_require__(/*! ./mat4.js */ \"./src/gl-matrix/mat4.js\");\n\nvar mat4 = _interopRequireWildcard(_mat);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * Dual Quaternion
\r\n * Format: [real, dual]
\r\n * Quaternion format: XYZW
\r\n * Make sure to have normalized dual quaternions, otherwise the functions may not work as intended.
\r\n * @module quat2\r\n */\n\n/**\r\n * Creates a new identity dual quat\r\n *\r\n * @returns {quat2} a new dual quaternion [real -> rotation, dual -> translation]\r\n */\nfunction create() {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = 0;\n dq[1] = 0;\n dq[2] = 0;\n dq[3] = 1;\n dq[4] = 0;\n dq[5] = 0;\n dq[6] = 0;\n dq[7] = 0;\n return dq;\n}\n\n/**\r\n * Creates a new quat initialized with values from an existing quaternion\r\n *\r\n * @param {quat2} a dual quaternion to clone\r\n * @returns {quat2} new dual quaternion\r\n * @function\r\n */\nfunction clone(a) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = a[0];\n dq[1] = a[1];\n dq[2] = a[2];\n dq[3] = a[3];\n dq[4] = a[4];\n dq[5] = a[5];\n dq[6] = a[6];\n dq[7] = a[7];\n return dq;\n}\n\n/**\r\n * Creates a new dual quat initialized with the given values\r\n *\r\n * @param {Number} x1 X component\r\n * @param {Number} y1 Y component\r\n * @param {Number} z1 Z component\r\n * @param {Number} w1 W component\r\n * @param {Number} x2 X component\r\n * @param {Number} y2 Y component\r\n * @param {Number} z2 Z component\r\n * @param {Number} w2 W component\r\n * @returns {quat2} new dual quaternion\r\n * @function\r\n */\nfunction fromValues(x1, y1, z1, w1, x2, y2, z2, w2) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = x1;\n dq[1] = y1;\n dq[2] = z1;\n dq[3] = w1;\n dq[4] = x2;\n dq[5] = y2;\n dq[6] = z2;\n dq[7] = w2;\n return dq;\n}\n\n/**\r\n * Creates a new dual quat from the given values (quat and translation)\r\n *\r\n * @param {Number} x1 X component\r\n * @param {Number} y1 Y component\r\n * @param {Number} z1 Z component\r\n * @param {Number} w1 W component\r\n * @param {Number} x2 X component (translation)\r\n * @param {Number} y2 Y component (translation)\r\n * @param {Number} z2 Z component (translation)\r\n * @returns {quat2} new dual quaternion\r\n * @function\r\n */\nfunction fromRotationTranslationValues(x1, y1, z1, w1, x2, y2, z2) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = x1;\n dq[1] = y1;\n dq[2] = z1;\n dq[3] = w1;\n var ax = x2 * 0.5,\n ay = y2 * 0.5,\n az = z2 * 0.5;\n dq[4] = ax * w1 + ay * z1 - az * y1;\n dq[5] = ay * w1 + az * x1 - ax * z1;\n dq[6] = az * w1 + ax * y1 - ay * x1;\n dq[7] = -ax * x1 - ay * y1 - az * z1;\n return dq;\n}\n\n/**\r\n * Creates a dual quat from a quaternion and a translation\r\n *\r\n * @param {quat2} dual quaternion receiving operation result\r\n * @param {quat} q quaternion\r\n * @param {vec3} t tranlation vector\r\n * @returns {quat2} dual quaternion receiving operation result\r\n * @function\r\n */\nfunction fromRotationTranslation(out, q, t) {\n var ax = t[0] * 0.5,\n ay = t[1] * 0.5,\n az = t[2] * 0.5,\n bx = q[0],\n by = q[1],\n bz = q[2],\n bw = q[3];\n out[0] = bx;\n out[1] = by;\n out[2] = bz;\n out[3] = bw;\n out[4] = ax * bw + ay * bz - az * by;\n out[5] = ay * bw + az * bx - ax * bz;\n out[6] = az * bw + ax * by - ay * bx;\n out[7] = -ax * bx - ay * by - az * bz;\n return out;\n}\n\n/**\r\n * Creates a dual quat from a translation\r\n *\r\n * @param {quat2} dual quaternion receiving operation result\r\n * @param {vec3} t translation vector\r\n * @returns {quat2} dual quaternion receiving operation result\r\n * @function\r\n */\nfunction fromTranslation(out, t) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = t[0] * 0.5;\n out[5] = t[1] * 0.5;\n out[6] = t[2] * 0.5;\n out[7] = 0;\n return out;\n}\n\n/**\r\n * Creates a dual quat from a quaternion\r\n *\r\n * @param {quat2} dual quaternion receiving operation result\r\n * @param {quat} q the quaternion\r\n * @returns {quat2} dual quaternion receiving operation result\r\n * @function\r\n */\nfunction fromRotation(out, q) {\n out[0] = q[0];\n out[1] = q[1];\n out[2] = q[2];\n out[3] = q[3];\n out[4] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n return out;\n}\n\n/**\r\n * Creates a new dual quat from a matrix (4x4)\r\n *\r\n * @param {quat2} out the dual quaternion\r\n * @param {mat4} a the matrix\r\n * @returns {quat2} dual quat receiving operation result\r\n * @function\r\n */\nfunction fromMat4(out, a) {\n //TODO Optimize this\n var outer = quat.create();\n mat4.getRotation(outer, a);\n var t = new glMatrix.ARRAY_TYPE(3);\n mat4.getTranslation(t, a);\n fromRotationTranslation(out, outer, t);\n return out;\n}\n\n/**\r\n * Copy the values from one dual quat to another\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the source dual quaternion\r\n * @returns {quat2} out\r\n * @function\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n return out;\n}\n\n/**\r\n * Set a dual quat to the identity dual quaternion\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @returns {quat2} out\r\n */\nfunction identity(out) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n return out;\n}\n\n/**\r\n * Set the components of a dual quat to the given values\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {Number} x1 X component\r\n * @param {Number} y1 Y component\r\n * @param {Number} z1 Z component\r\n * @param {Number} w1 W component\r\n * @param {Number} x2 X component\r\n * @param {Number} y2 Y component\r\n * @param {Number} z2 Z component\r\n * @param {Number} w2 W component\r\n * @returns {quat2} out\r\n * @function\r\n */\nfunction set(out, x1, y1, z1, w1, x2, y2, z2, w2) {\n out[0] = x1;\n out[1] = y1;\n out[2] = z1;\n out[3] = w1;\n\n out[4] = x2;\n out[5] = y2;\n out[6] = z2;\n out[7] = w2;\n return out;\n}\n\n/**\r\n * Gets the real part of a dual quat\r\n * @param {quat} out real part\r\n * @param {quat2} a Dual Quaternion\r\n * @return {quat} real part\r\n */\nvar getReal = exports.getReal = quat.copy;\n\n/**\r\n * Gets the dual part of a dual quat\r\n * @param {quat} out dual part\r\n * @param {quat2} a Dual Quaternion\r\n * @return {quat} dual part\r\n */\nfunction getDual(out, a) {\n out[0] = a[4];\n out[1] = a[5];\n out[2] = a[6];\n out[3] = a[7];\n return out;\n}\n\n/**\r\n * Set the real component of a dual quat to the given quaternion\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {quat} q a quaternion representing the real part\r\n * @returns {quat2} out\r\n * @function\r\n */\nvar setReal = exports.setReal = quat.copy;\n\n/**\r\n * Set the dual component of a dual quat to the given quaternion\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {quat} q a quaternion representing the dual part\r\n * @returns {quat2} out\r\n * @function\r\n */\nfunction setDual(out, q) {\n out[4] = q[0];\n out[5] = q[1];\n out[6] = q[2];\n out[7] = q[3];\n return out;\n}\n\n/**\r\n * Gets the translation of a normalized dual quat\r\n * @param {vec3} out translation\r\n * @param {quat2} a Dual Quaternion to be decomposed\r\n * @return {vec3} translation\r\n */\nfunction getTranslation(out, a) {\n var ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3];\n out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;\n out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;\n out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;\n return out;\n}\n\n/**\r\n * Translates a dual quat by the given vector\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the dual quaternion to translate\r\n * @param {vec3} v vector to translate by\r\n * @returns {quat2} out\r\n */\nfunction translate(out, a, v) {\n var ax1 = a[0],\n ay1 = a[1],\n az1 = a[2],\n aw1 = a[3],\n bx1 = v[0] * 0.5,\n by1 = v[1] * 0.5,\n bz1 = v[2] * 0.5,\n ax2 = a[4],\n ay2 = a[5],\n az2 = a[6],\n aw2 = a[7];\n out[0] = ax1;\n out[1] = ay1;\n out[2] = az1;\n out[3] = aw1;\n out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2;\n out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2;\n out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2;\n out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2;\n return out;\n}\n\n/**\r\n * Rotates a dual quat around the X axis\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the dual quaternion to rotate\r\n * @param {number} rad how far should the rotation be\r\n * @returns {quat2} out\r\n */\nfunction rotateX(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateX(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n\n/**\r\n * Rotates a dual quat around the Y axis\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the dual quaternion to rotate\r\n * @param {number} rad how far should the rotation be\r\n * @returns {quat2} out\r\n */\nfunction rotateY(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateY(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n\n/**\r\n * Rotates a dual quat around the Z axis\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the dual quaternion to rotate\r\n * @param {number} rad how far should the rotation be\r\n * @returns {quat2} out\r\n */\nfunction rotateZ(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateZ(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n\n/**\r\n * Rotates a dual quat by a given quaternion (a * q)\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the dual quaternion to rotate\r\n * @param {quat} q quaternion to rotate by\r\n * @returns {quat2} out\r\n */\nfunction rotateByQuatAppend(out, a, q) {\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3],\n ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n\n out[0] = ax * qw + aw * qx + ay * qz - az * qy;\n out[1] = ay * qw + aw * qy + az * qx - ax * qz;\n out[2] = az * qw + aw * qz + ax * qy - ay * qx;\n out[3] = aw * qw - ax * qx - ay * qy - az * qz;\n ax = a[4];\n ay = a[5];\n az = a[6];\n aw = a[7];\n out[4] = ax * qw + aw * qx + ay * qz - az * qy;\n out[5] = ay * qw + aw * qy + az * qx - ax * qz;\n out[6] = az * qw + aw * qz + ax * qy - ay * qx;\n out[7] = aw * qw - ax * qx - ay * qy - az * qz;\n return out;\n}\n\n/**\r\n * Rotates a dual quat by a given quaternion (q * a)\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat} q quaternion to rotate by\r\n * @param {quat2} a the dual quaternion to rotate\r\n * @returns {quat2} out\r\n */\nfunction rotateByQuatPrepend(out, q, a) {\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3],\n bx = a[0],\n by = a[1],\n bz = a[2],\n bw = a[3];\n\n out[0] = qx * bw + qw * bx + qy * bz - qz * by;\n out[1] = qy * bw + qw * by + qz * bx - qx * bz;\n out[2] = qz * bw + qw * bz + qx * by - qy * bx;\n out[3] = qw * bw - qx * bx - qy * by - qz * bz;\n bx = a[4];\n by = a[5];\n bz = a[6];\n bw = a[7];\n out[4] = qx * bw + qw * bx + qy * bz - qz * by;\n out[5] = qy * bw + qw * by + qz * bx - qx * bz;\n out[6] = qz * bw + qw * bz + qx * by - qy * bx;\n out[7] = qw * bw - qx * bx - qy * by - qz * bz;\n return out;\n}\n\n/**\r\n * Rotates a dual quat around a given axis. Does the normalisation automatically\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the dual quaternion to rotate\r\n * @param {vec3} axis the axis to rotate around\r\n * @param {Number} rad how far the rotation should be\r\n * @returns {quat2} out\r\n */\nfunction rotateAroundAxis(out, a, axis, rad) {\n //Special case for rad = 0\n if (Math.abs(rad) < glMatrix.EPSILON) {\n return copy(out, a);\n }\n var axisLength = Math.sqrt(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);\n\n rad = rad * 0.5;\n var s = Math.sin(rad);\n var bx = s * axis[0] / axisLength;\n var by = s * axis[1] / axisLength;\n var bz = s * axis[2] / axisLength;\n var bw = Math.cos(rad);\n\n var ax1 = a[0],\n ay1 = a[1],\n az1 = a[2],\n aw1 = a[3];\n out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n\n var ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7];\n out[4] = ax * bw + aw * bx + ay * bz - az * by;\n out[5] = ay * bw + aw * by + az * bx - ax * bz;\n out[6] = az * bw + aw * bz + ax * by - ay * bx;\n out[7] = aw * bw - ax * bx - ay * by - az * bz;\n\n return out;\n}\n\n/**\r\n * Adds two dual quat's\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the first operand\r\n * @param {quat2} b the second operand\r\n * @returns {quat2} out\r\n * @function\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n return out;\n}\n\n/**\r\n * Multiplies two dual quat's\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a the first operand\r\n * @param {quat2} b the second operand\r\n * @returns {quat2} out\r\n */\nfunction multiply(out, a, b) {\n var ax0 = a[0],\n ay0 = a[1],\n az0 = a[2],\n aw0 = a[3],\n bx1 = b[4],\n by1 = b[5],\n bz1 = b[6],\n bw1 = b[7],\n ax1 = a[4],\n ay1 = a[5],\n az1 = a[6],\n aw1 = a[7],\n bx0 = b[0],\n by0 = b[1],\n bz0 = b[2],\n bw0 = b[3];\n out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0;\n out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0;\n out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0;\n out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0;\n out[4] = ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0;\n out[5] = ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0;\n out[6] = az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0;\n out[7] = aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0;\n return out;\n}\n\n/**\r\n * Alias for {@link quat2.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Scales a dual quat by a scalar number\r\n *\r\n * @param {quat2} out the receiving dual quat\r\n * @param {quat2} a the dual quat to scale\r\n * @param {Number} b amount to scale the dual quat by\r\n * @returns {quat2} out\r\n * @function\r\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n return out;\n}\n\n/**\r\n * Calculates the dot product of two dual quat's (The dot product of the real parts)\r\n *\r\n * @param {quat2} a the first operand\r\n * @param {quat2} b the second operand\r\n * @returns {Number} dot product of a and b\r\n * @function\r\n */\nvar dot = exports.dot = quat.dot;\n\n/**\r\n * Performs a linear interpolation between two dual quats's\r\n * NOTE: The resulting dual quaternions won't always be normalized (The error is most noticeable when t = 0.5)\r\n *\r\n * @param {quat2} out the receiving dual quat\r\n * @param {quat2} a the first operand\r\n * @param {quat2} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat2} out\r\n */\nfunction lerp(out, a, b, t) {\n var mt = 1 - t;\n if (dot(a, b) < 0) t = -t;\n\n out[0] = a[0] * mt + b[0] * t;\n out[1] = a[1] * mt + b[1] * t;\n out[2] = a[2] * mt + b[2] * t;\n out[3] = a[3] * mt + b[3] * t;\n out[4] = a[4] * mt + b[4] * t;\n out[5] = a[5] * mt + b[5] * t;\n out[6] = a[6] * mt + b[6] * t;\n out[7] = a[7] * mt + b[7] * t;\n\n return out;\n}\n\n/**\r\n * Calculates the inverse of a dual quat. If they are normalized, conjugate is cheaper\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a dual quat to calculate inverse of\r\n * @returns {quat2} out\r\n */\nfunction invert(out, a) {\n var sqlen = squaredLength(a);\n out[0] = -a[0] / sqlen;\n out[1] = -a[1] / sqlen;\n out[2] = -a[2] / sqlen;\n out[3] = a[3] / sqlen;\n out[4] = -a[4] / sqlen;\n out[5] = -a[5] / sqlen;\n out[6] = -a[6] / sqlen;\n out[7] = a[7] / sqlen;\n return out;\n}\n\n/**\r\n * Calculates the conjugate of a dual quat\r\n * If the dual quaternion is normalized, this function is faster than quat2.inverse and produces the same result.\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {quat2} a quat to calculate conjugate of\r\n * @returns {quat2} out\r\n */\nfunction conjugate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a[3];\n out[4] = -a[4];\n out[5] = -a[5];\n out[6] = -a[6];\n out[7] = a[7];\n return out;\n}\n\n/**\r\n * Calculates the length of a dual quat\r\n *\r\n * @param {quat2} a dual quat to calculate length of\r\n * @returns {Number} length of a\r\n * @function\r\n */\nvar length = exports.length = quat.length;\n\n/**\r\n * Alias for {@link quat2.length}\r\n * @function\r\n */\nvar len = exports.len = length;\n\n/**\r\n * Calculates the squared length of a dual quat\r\n *\r\n * @param {quat2} a dual quat to calculate squared length of\r\n * @returns {Number} squared length of a\r\n * @function\r\n */\nvar squaredLength = exports.squaredLength = quat.squaredLength;\n\n/**\r\n * Alias for {@link quat2.squaredLength}\r\n * @function\r\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\r\n * Normalize a dual quat\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {quat2} a dual quaternion to normalize\r\n * @returns {quat2} out\r\n * @function\r\n */\nfunction normalize(out, a) {\n var magnitude = squaredLength(a);\n if (magnitude > 0) {\n magnitude = Math.sqrt(magnitude);\n out[0] = a[0] / magnitude;\n out[1] = a[1] / magnitude;\n out[2] = a[2] / magnitude;\n out[3] = a[3] / magnitude;\n out[4] = a[4] / magnitude;\n out[5] = a[5] / magnitude;\n out[6] = a[6] / magnitude;\n out[7] = a[7] / magnitude;\n }\n return out;\n}\n\n/**\r\n * Returns a string representation of a dual quatenion\r\n *\r\n * @param {quat2} a dual quaternion to represent as a string\r\n * @returns {String} string representation of the dual quat\r\n */\nfunction str(a) {\n return 'quat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ')';\n}\n\n/**\r\n * Returns whether or not the dual quaternions have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {quat2} a the first dual quaternion.\r\n * @param {quat2} b the second dual quaternion.\r\n * @returns {Boolean} true if the dual quaternions are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7];\n}\n\n/**\r\n * Returns whether or not the dual quaternions have approximately the same elements in the same position.\r\n *\r\n * @param {quat2} a the first dual quat.\r\n * @param {quat2} b the second dual quat.\r\n * @returns {Boolean} true if the dual quats are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7));\n}\n\n//# sourceURL=webpack:///./src/gl-matrix/quat2.js?"); /***/ }), @@ -213,7 +228,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.forEach = exports.sqrLen = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = exports.len = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.length = length;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.cross = cross;\nexports.lerp = lerp;\nexports.random = random;\nexports.transformMat2 = transformMat2;\nexports.transformMat2d = transformMat2d;\nexports.transformMat3 = transformMat3;\nexports.transformMat4 = transformMat4;\nexports.rotate = rotate;\nexports.angle = angle;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 2 Dimensional Vector\n * @module vec2\n */\n\n/**\n * Creates a new, empty vec2\n *\n * @returns {vec2} a new 2D vector\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = 0;\n out[1] = 0;\n return out;\n}\n\n/**\n * Creates a new vec2 initialized with values from an existing vector\n *\n * @param {vec2} a vector to clone\n * @returns {vec2} a new 2D vector\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n\n/**\n * Creates a new vec2 initialized with the given values\n *\n * @param {Number} x X component\n * @param {Number} y Y component\n * @returns {vec2} a new 2D vector\n */\nfunction fromValues(x, y) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = x;\n out[1] = y;\n return out;\n}\n\n/**\n * Copy the values from one vec2 to another\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the source vector\n * @returns {vec2} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n\n/**\n * Set the components of a vec2 to the given values\n *\n * @param {vec2} out the receiving vector\n * @param {Number} x X component\n * @param {Number} y Y component\n * @returns {vec2} out\n */\nfunction set(out, x, y) {\n out[0] = x;\n out[1] = y;\n return out;\n}\n\n/**\n * Adds two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {vec2} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n return out;\n}\n\n/**\n * Subtracts vector b from vector a\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {vec2} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n return out;\n}\n\n/**\n * Multiplies two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {vec2} out\n */\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n return out;\n}\n\n/**\n * Divides two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {vec2} out\n */\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n return out;\n}\n\n/**\n * Math.ceil the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a vector to ceil\n * @returns {vec2} out\n */\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n return out;\n}\n\n/**\n * Math.floor the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a vector to floor\n * @returns {vec2} out\n */\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n return out;\n}\n\n/**\n * Returns the minimum of two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {vec2} out\n */\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n return out;\n}\n\n/**\n * Returns the maximum of two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {vec2} out\n */\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n return out;\n}\n\n/**\n * Math.round the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a vector to round\n * @returns {vec2} out\n */\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n return out;\n}\n\n/**\n * Scales a vec2 by a scalar number\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the vector to scale\n * @param {Number} b amount to scale the vector by\n * @returns {vec2} out\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n return out;\n}\n\n/**\n * Adds two vec2's after scaling the second operand by a scalar value\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @param {Number} scale the amount to scale b by before adding\n * @returns {vec2} out\n */\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n return out;\n}\n\n/**\n * Calculates the euclidian distance between two vec2's\n *\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {Number} distance between a and b\n */\nfunction distance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return Math.sqrt(x * x + y * y);\n}\n\n/**\n * Calculates the squared euclidian distance between two vec2's\n *\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {Number} squared distance between a and b\n */\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return x * x + y * y;\n}\n\n/**\n * Calculates the length of a vec2\n *\n * @param {vec2} a vector to calculate length of\n * @returns {Number} length of a\n */\nfunction length(a) {\n var x = a[0],\n y = a[1];\n return Math.sqrt(x * x + y * y);\n}\n\n/**\n * Calculates the squared length of a vec2\n *\n * @param {vec2} a vector to calculate squared length of\n * @returns {Number} squared length of a\n */\nfunction squaredLength(a) {\n var x = a[0],\n y = a[1];\n return x * x + y * y;\n}\n\n/**\n * Negates the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a vector to negate\n * @returns {vec2} out\n */\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n return out;\n}\n\n/**\n * Returns the inverse of the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a vector to invert\n * @returns {vec2} out\n */\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n return out;\n}\n\n/**\n * Normalize a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a vector to normalize\n * @returns {vec2} out\n */\nfunction normalize(out, a) {\n var x = a[0],\n y = a[1];\n var len = x * x + y * y;\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n }\n return out;\n}\n\n/**\n * Calculates the dot product of two vec2's\n *\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {Number} dot product of a and b\n */\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1];\n}\n\n/**\n * Computes the cross product of two vec2's\n * Note that the cross product must by definition produce a 3D vector\n *\n * @param {vec3} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @returns {vec3} out\n */\nfunction cross(out, a, b) {\n var z = a[0] * b[1] - a[1] * b[0];\n out[0] = out[1] = 0;\n out[2] = z;\n return out;\n}\n\n/**\n * Performs a linear interpolation between two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the first operand\n * @param {vec2} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec2} out\n */\nfunction lerp(out, a, b, t) {\n var ax = a[0],\n ay = a[1];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n return out;\n}\n\n/**\n * Generates a random vector with the given scale\n *\n * @param {vec2} out the receiving vector\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\n * @returns {vec2} out\n */\nfunction random(out, scale) {\n scale = scale || 1.0;\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n out[0] = Math.cos(r) * scale;\n out[1] = Math.sin(r) * scale;\n return out;\n}\n\n/**\n * Transforms the vec2 with a mat2\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the vector to transform\n * @param {mat2} m matrix to transform with\n * @returns {vec2} out\n */\nfunction transformMat2(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y;\n out[1] = m[1] * x + m[3] * y;\n return out;\n}\n\n/**\n * Transforms the vec2 with a mat2d\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the vector to transform\n * @param {mat2d} m matrix to transform with\n * @returns {vec2} out\n */\nfunction transformMat2d(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y + m[4];\n out[1] = m[1] * x + m[3] * y + m[5];\n return out;\n}\n\n/**\n * Transforms the vec2 with a mat3\n * 3rd vector component is implicitly '1'\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the vector to transform\n * @param {mat3} m matrix to transform with\n * @returns {vec2} out\n */\nfunction transformMat3(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[3] * y + m[6];\n out[1] = m[1] * x + m[4] * y + m[7];\n return out;\n}\n\n/**\n * Transforms the vec2 with a mat4\n * 3rd vector component is implicitly '0'\n * 4th vector component is implicitly '1'\n *\n * @param {vec2} out the receiving vector\n * @param {vec2} a the vector to transform\n * @param {mat4} m matrix to transform with\n * @returns {vec2} out\n */\nfunction transformMat4(out, a, m) {\n var x = a[0];\n var y = a[1];\n out[0] = m[0] * x + m[4] * y + m[12];\n out[1] = m[1] * x + m[5] * y + m[13];\n return out;\n}\n\n/**\n * Rotate a 2D vector\n * @param {vec2} out The receiving vec2\n * @param {vec2} a The vec2 point to rotate\n * @param {vec2} b The origin of the rotation\n * @param {Number} c The angle of rotation\n * @returns {vec2} out\n */\nfunction rotate(out, a, b, c) {\n //Translate point to the origin\n var p0 = a[0] - b[0],\n p1 = a[1] - b[1],\n sinC = Math.sin(c),\n cosC = Math.cos(c);\n\n //perform rotation and translate to correct position\n out[0] = p0 * cosC - p1 * sinC + b[0];\n out[1] = p0 * sinC + p1 * cosC + b[1];\n\n return out;\n}\n\n/**\n * Get the angle between two 2D vectors\n * @param {vec2} a The first operand\n * @param {vec2} b The second operand\n * @returns {Number} The angle in radians\n */\nfunction angle(a, b) {\n var x1 = a[0],\n y1 = a[1],\n x2 = b[0],\n y2 = b[1];\n\n var len1 = x1 * x1 + y1 * y1;\n if (len1 > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len1 = 1 / Math.sqrt(len1);\n }\n\n var len2 = x2 * x2 + y2 * y2;\n if (len2 > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len2 = 1 / Math.sqrt(len2);\n }\n\n var cosine = (x1 * x2 + y1 * y2) * len1 * len2;\n\n if (cosine > 1.0) {\n return 0;\n } else if (cosine < -1.0) {\n return Math.PI;\n } else {\n return Math.acos(cosine);\n }\n}\n\n/**\n * Returns a string representation of a vector\n *\n * @param {vec2} a vector to represent as a string\n * @returns {String} string representation of the vector\n */\nfunction str(a) {\n return 'vec2(' + a[0] + ', ' + a[1] + ')';\n}\n\n/**\n * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)\n *\n * @param {vec2} a The first vector.\n * @param {vec2} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1];\n}\n\n/**\n * Returns whether or not the vectors have approximately the same elements in the same position.\n *\n * @param {vec2} a The first vector.\n * @param {vec2} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1];\n var b0 = b[0],\n b1 = b[1];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));\n}\n\n/**\n * Alias for {@link vec2.length}\n * @function\n */\nvar len = exports.len = length;\n\n/**\n * Alias for {@link vec2.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n/**\n * Alias for {@link vec2.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link vec2.divide}\n * @function\n */\nvar div = exports.div = divide;\n\n/**\n * Alias for {@link vec2.distance}\n * @function\n */\nvar dist = exports.dist = distance;\n\n/**\n * Alias for {@link vec2.squaredDistance}\n * @function\n */\nvar sqrDist = exports.sqrDist = squaredDistance;\n\n/**\n * Alias for {@link vec2.squaredLength}\n * @function\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\n * Perform some operation over an array of vec2s.\n *\n * @param {Array} a the array of vectors to iterate over\n * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed\n * @param {Number} offset Number of elements to skip at the beginning of the array\n * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array\n * @param {Function} fn Function to call for each vector in the array\n * @param {Object} [arg] additional argument to pass to fn\n * @returns {Array} a\n * @function\n */\nvar forEach = exports.forEach = function () {\n var vec = create();\n\n return function (a, stride, offset, count, fn, arg) {\n var i = void 0,\n l = void 0;\n if (!stride) {\n stride = 2;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];vec[1] = a[i + 1];\n fn(vec, vec, arg);\n a[i] = vec[0];a[i + 1] = vec[1];\n }\n\n return a;\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/vec2.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.forEach = exports.sqrLen = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = exports.len = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.length = length;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.cross = cross;\nexports.lerp = lerp;\nexports.random = random;\nexports.transformMat2 = transformMat2;\nexports.transformMat2d = transformMat2d;\nexports.transformMat3 = transformMat3;\nexports.transformMat4 = transformMat4;\nexports.rotate = rotate;\nexports.angle = angle;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * 2 Dimensional Vector\r\n * @module vec2\r\n */\n\n/**\r\n * Creates a new, empty vec2\r\n *\r\n * @returns {vec2} a new 2D vector\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = 0;\n out[1] = 0;\n return out;\n}\n\n/**\r\n * Creates a new vec2 initialized with values from an existing vector\r\n *\r\n * @param {vec2} a vector to clone\r\n * @returns {vec2} a new 2D vector\r\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n\n/**\r\n * Creates a new vec2 initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @returns {vec2} a new 2D vector\r\n */\nfunction fromValues(x, y) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = x;\n out[1] = y;\n return out;\n}\n\n/**\r\n * Copy the values from one vec2 to another\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the source vector\r\n * @returns {vec2} out\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n\n/**\r\n * Set the components of a vec2 to the given values\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @returns {vec2} out\r\n */\nfunction set(out, x, y) {\n out[0] = x;\n out[1] = y;\n return out;\n}\n\n/**\r\n * Adds two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {vec2} out\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n return out;\n}\n\n/**\r\n * Subtracts vector b from vector a\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {vec2} out\r\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n return out;\n}\n\n/**\r\n * Multiplies two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {vec2} out\r\n */\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n return out;\n}\n\n/**\r\n * Divides two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {vec2} out\r\n */\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n return out;\n}\n\n/**\r\n * Math.ceil the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a vector to ceil\r\n * @returns {vec2} out\r\n */\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n return out;\n}\n\n/**\r\n * Math.floor the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a vector to floor\r\n * @returns {vec2} out\r\n */\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n return out;\n}\n\n/**\r\n * Returns the minimum of two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {vec2} out\r\n */\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n return out;\n}\n\n/**\r\n * Returns the maximum of two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {vec2} out\r\n */\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n return out;\n}\n\n/**\r\n * Math.round the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a vector to round\r\n * @returns {vec2} out\r\n */\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n return out;\n}\n\n/**\r\n * Scales a vec2 by a scalar number\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {vec2} out\r\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n return out;\n}\n\n/**\r\n * Adds two vec2's after scaling the second operand by a scalar value\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @param {Number} scale the amount to scale b by before adding\r\n * @returns {vec2} out\r\n */\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n return out;\n}\n\n/**\r\n * Calculates the euclidian distance between two vec2's\r\n *\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {Number} distance between a and b\r\n */\nfunction distance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return Math.sqrt(x * x + y * y);\n}\n\n/**\r\n * Calculates the squared euclidian distance between two vec2's\r\n *\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {Number} squared distance between a and b\r\n */\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return x * x + y * y;\n}\n\n/**\r\n * Calculates the length of a vec2\r\n *\r\n * @param {vec2} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\nfunction length(a) {\n var x = a[0],\n y = a[1];\n return Math.sqrt(x * x + y * y);\n}\n\n/**\r\n * Calculates the squared length of a vec2\r\n *\r\n * @param {vec2} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n */\nfunction squaredLength(a) {\n var x = a[0],\n y = a[1];\n return x * x + y * y;\n}\n\n/**\r\n * Negates the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a vector to negate\r\n * @returns {vec2} out\r\n */\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n return out;\n}\n\n/**\r\n * Returns the inverse of the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a vector to invert\r\n * @returns {vec2} out\r\n */\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n return out;\n}\n\n/**\r\n * Normalize a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a vector to normalize\r\n * @returns {vec2} out\r\n */\nfunction normalize(out, a) {\n var x = a[0],\n y = a[1];\n var len = x * x + y * y;\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n }\n return out;\n}\n\n/**\r\n * Calculates the dot product of two vec2's\r\n *\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {Number} dot product of a and b\r\n */\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1];\n}\n\n/**\r\n * Computes the cross product of two vec2's\r\n * Note that the cross product must by definition produce a 3D vector\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction cross(out, a, b) {\n var z = a[0] * b[1] - a[1] * b[0];\n out[0] = out[1] = 0;\n out[2] = z;\n return out;\n}\n\n/**\r\n * Performs a linear interpolation between two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the first operand\r\n * @param {vec2} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec2} out\r\n */\nfunction lerp(out, a, b, t) {\n var ax = a[0],\n ay = a[1];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n return out;\n}\n\n/**\r\n * Generates a random vector with the given scale\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\r\n * @returns {vec2} out\r\n */\nfunction random(out, scale) {\n scale = scale || 1.0;\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n out[0] = Math.cos(r) * scale;\n out[1] = Math.sin(r) * scale;\n return out;\n}\n\n/**\r\n * Transforms the vec2 with a mat2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the vector to transform\r\n * @param {mat2} m matrix to transform with\r\n * @returns {vec2} out\r\n */\nfunction transformMat2(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y;\n out[1] = m[1] * x + m[3] * y;\n return out;\n}\n\n/**\r\n * Transforms the vec2 with a mat2d\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the vector to transform\r\n * @param {mat2d} m matrix to transform with\r\n * @returns {vec2} out\r\n */\nfunction transformMat2d(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y + m[4];\n out[1] = m[1] * x + m[3] * y + m[5];\n return out;\n}\n\n/**\r\n * Transforms the vec2 with a mat3\r\n * 3rd vector component is implicitly '1'\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the vector to transform\r\n * @param {mat3} m matrix to transform with\r\n * @returns {vec2} out\r\n */\nfunction transformMat3(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[3] * y + m[6];\n out[1] = m[1] * x + m[4] * y + m[7];\n return out;\n}\n\n/**\r\n * Transforms the vec2 with a mat4\r\n * 3rd vector component is implicitly '0'\r\n * 4th vector component is implicitly '1'\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {vec2} a the vector to transform\r\n * @param {mat4} m matrix to transform with\r\n * @returns {vec2} out\r\n */\nfunction transformMat4(out, a, m) {\n var x = a[0];\n var y = a[1];\n out[0] = m[0] * x + m[4] * y + m[12];\n out[1] = m[1] * x + m[5] * y + m[13];\n return out;\n}\n\n/**\r\n * Rotate a 2D vector\r\n * @param {vec2} out The receiving vec2\r\n * @param {vec2} a The vec2 point to rotate\r\n * @param {vec2} b The origin of the rotation\r\n * @param {Number} c The angle of rotation\r\n * @returns {vec2} out\r\n */\nfunction rotate(out, a, b, c) {\n //Translate point to the origin\n var p0 = a[0] - b[0],\n p1 = a[1] - b[1],\n sinC = Math.sin(c),\n cosC = Math.cos(c);\n\n //perform rotation and translate to correct position\n out[0] = p0 * cosC - p1 * sinC + b[0];\n out[1] = p0 * sinC + p1 * cosC + b[1];\n\n return out;\n}\n\n/**\r\n * Get the angle between two 2D vectors\r\n * @param {vec2} a The first operand\r\n * @param {vec2} b The second operand\r\n * @returns {Number} The angle in radians\r\n */\nfunction angle(a, b) {\n var x1 = a[0],\n y1 = a[1],\n x2 = b[0],\n y2 = b[1];\n\n var len1 = x1 * x1 + y1 * y1;\n if (len1 > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len1 = 1 / Math.sqrt(len1);\n }\n\n var len2 = x2 * x2 + y2 * y2;\n if (len2 > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len2 = 1 / Math.sqrt(len2);\n }\n\n var cosine = (x1 * x2 + y1 * y2) * len1 * len2;\n\n if (cosine > 1.0) {\n return 0;\n } else if (cosine < -1.0) {\n return Math.PI;\n } else {\n return Math.acos(cosine);\n }\n}\n\n/**\r\n * Returns a string representation of a vector\r\n *\r\n * @param {vec2} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\nfunction str(a) {\n return 'vec2(' + a[0] + ', ' + a[1] + ')';\n}\n\n/**\r\n * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)\r\n *\r\n * @param {vec2} a The first vector.\r\n * @param {vec2} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1];\n}\n\n/**\r\n * Returns whether or not the vectors have approximately the same elements in the same position.\r\n *\r\n * @param {vec2} a The first vector.\r\n * @param {vec2} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1];\n var b0 = b[0],\n b1 = b[1];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));\n}\n\n/**\r\n * Alias for {@link vec2.length}\r\n * @function\r\n */\nvar len = exports.len = length;\n\n/**\r\n * Alias for {@link vec2.subtract}\r\n * @function\r\n */\nvar sub = exports.sub = subtract;\n\n/**\r\n * Alias for {@link vec2.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Alias for {@link vec2.divide}\r\n * @function\r\n */\nvar div = exports.div = divide;\n\n/**\r\n * Alias for {@link vec2.distance}\r\n * @function\r\n */\nvar dist = exports.dist = distance;\n\n/**\r\n * Alias for {@link vec2.squaredDistance}\r\n * @function\r\n */\nvar sqrDist = exports.sqrDist = squaredDistance;\n\n/**\r\n * Alias for {@link vec2.squaredLength}\r\n * @function\r\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\r\n * Perform some operation over an array of vec2s.\r\n *\r\n * @param {Array} a the array of vectors to iterate over\r\n * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed\r\n * @param {Number} offset Number of elements to skip at the beginning of the array\r\n * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array\r\n * @param {Function} fn Function to call for each vector in the array\r\n * @param {Object} [arg] additional argument to pass to fn\r\n * @returns {Array} a\r\n * @function\r\n */\nvar forEach = exports.forEach = function () {\n var vec = create();\n\n return function (a, stride, offset, count, fn, arg) {\n var i = void 0,\n l = void 0;\n if (!stride) {\n stride = 2;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];vec[1] = a[i + 1];\n fn(vec, vec, arg);\n a[i] = vec[0];a[i + 1] = vec[1];\n }\n\n return a;\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/vec2.js?"); /***/ }), @@ -225,7 +240,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.length = length;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.cross = cross;\nexports.lerp = lerp;\nexports.hermite = hermite;\nexports.bezier = bezier;\nexports.random = random;\nexports.transformMat4 = transformMat4;\nexports.transformMat3 = transformMat3;\nexports.transformQuat = transformQuat;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.angle = angle;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 3 Dimensional Vector\n * @module vec3\n */\n\n/**\n * Creates a new, empty vec3\n *\n * @returns {vec3} a new 3D vector\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n return out;\n}\n\n/**\n * Creates a new vec3 initialized with values from an existing vector\n *\n * @param {vec3} a vector to clone\n * @returns {vec3} a new 3D vector\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n\n/**\n * Calculates the length of a vec3\n *\n * @param {vec3} a vector to calculate length of\n * @returns {Number} length of a\n */\nfunction length(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return Math.sqrt(x * x + y * y + z * z);\n}\n\n/**\n * Creates a new vec3 initialized with the given values\n *\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @returns {vec3} a new 3D vector\n */\nfunction fromValues(x, y, z) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n\n/**\n * Copy the values from one vec3 to another\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the source vector\n * @returns {vec3} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n\n/**\n * Set the components of a vec3 to the given values\n *\n * @param {vec3} out the receiving vector\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @returns {vec3} out\n */\nfunction set(out, x, y, z) {\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n\n/**\n * Adds two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {vec3} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n return out;\n}\n\n/**\n * Subtracts vector b from vector a\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {vec3} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n return out;\n}\n\n/**\n * Multiplies two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {vec3} out\n */\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n out[2] = a[2] * b[2];\n return out;\n}\n\n/**\n * Divides two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {vec3} out\n */\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n out[2] = a[2] / b[2];\n return out;\n}\n\n/**\n * Math.ceil the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a vector to ceil\n * @returns {vec3} out\n */\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n out[2] = Math.ceil(a[2]);\n return out;\n}\n\n/**\n * Math.floor the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a vector to floor\n * @returns {vec3} out\n */\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n out[2] = Math.floor(a[2]);\n return out;\n}\n\n/**\n * Returns the minimum of two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {vec3} out\n */\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n out[2] = Math.min(a[2], b[2]);\n return out;\n}\n\n/**\n * Returns the maximum of two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {vec3} out\n */\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n out[2] = Math.max(a[2], b[2]);\n return out;\n}\n\n/**\n * Math.round the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a vector to round\n * @returns {vec3} out\n */\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n out[2] = Math.round(a[2]);\n return out;\n}\n\n/**\n * Scales a vec3 by a scalar number\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the vector to scale\n * @param {Number} b amount to scale the vector by\n * @returns {vec3} out\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n return out;\n}\n\n/**\n * Adds two vec3's after scaling the second operand by a scalar value\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @param {Number} scale the amount to scale b by before adding\n * @returns {vec3} out\n */\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n return out;\n}\n\n/**\n * Calculates the euclidian distance between two vec3's\n *\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {Number} distance between a and b\n */\nfunction distance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return Math.sqrt(x * x + y * y + z * z);\n}\n\n/**\n * Calculates the squared euclidian distance between two vec3's\n *\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {Number} squared distance between a and b\n */\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return x * x + y * y + z * z;\n}\n\n/**\n * Calculates the squared length of a vec3\n *\n * @param {vec3} a vector to calculate squared length of\n * @returns {Number} squared length of a\n */\nfunction squaredLength(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return x * x + y * y + z * z;\n}\n\n/**\n * Negates the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a vector to negate\n * @returns {vec3} out\n */\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n return out;\n}\n\n/**\n * Returns the inverse of the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a vector to invert\n * @returns {vec3} out\n */\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n out[2] = 1.0 / a[2];\n return out;\n}\n\n/**\n * Normalize a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a vector to normalize\n * @returns {vec3} out\n */\nfunction normalize(out, a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var len = x * x + y * y + z * z;\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n out[2] = a[2] * len;\n }\n return out;\n}\n\n/**\n * Calculates the dot product of two vec3's\n *\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {Number} dot product of a and b\n */\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];\n}\n\n/**\n * Computes the cross product of two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @returns {vec3} out\n */\nfunction cross(out, a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2];\n var bx = b[0],\n by = b[1],\n bz = b[2];\n\n out[0] = ay * bz - az * by;\n out[1] = az * bx - ax * bz;\n out[2] = ax * by - ay * bx;\n return out;\n}\n\n/**\n * Performs a linear interpolation between two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec3} out\n */\nfunction lerp(out, a, b, t) {\n var ax = a[0];\n var ay = a[1];\n var az = a[2];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n out[2] = az + t * (b[2] - az);\n return out;\n}\n\n/**\n * Performs a hermite interpolation with two control points\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @param {vec3} c the third operand\n * @param {vec3} d the fourth operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec3} out\n */\nfunction hermite(out, a, b, c, d, t) {\n var factorTimes2 = t * t;\n var factor1 = factorTimes2 * (2 * t - 3) + 1;\n var factor2 = factorTimes2 * (t - 2) + t;\n var factor3 = factorTimes2 * (t - 1);\n var factor4 = factorTimes2 * (3 - 2 * t);\n\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n\n return out;\n}\n\n/**\n * Performs a bezier interpolation with two control points\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the first operand\n * @param {vec3} b the second operand\n * @param {vec3} c the third operand\n * @param {vec3} d the fourth operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec3} out\n */\nfunction bezier(out, a, b, c, d, t) {\n var inverseFactor = 1 - t;\n var inverseFactorTimesTwo = inverseFactor * inverseFactor;\n var factorTimes2 = t * t;\n var factor1 = inverseFactorTimesTwo * inverseFactor;\n var factor2 = 3 * t * inverseFactorTimesTwo;\n var factor3 = 3 * factorTimes2 * inverseFactor;\n var factor4 = factorTimes2 * t;\n\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n\n return out;\n}\n\n/**\n * Generates a random vector with the given scale\n *\n * @param {vec3} out the receiving vector\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\n * @returns {vec3} out\n */\nfunction random(out, scale) {\n scale = scale || 1.0;\n\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n var z = glMatrix.RANDOM() * 2.0 - 1.0;\n var zScale = Math.sqrt(1.0 - z * z) * scale;\n\n out[0] = Math.cos(r) * zScale;\n out[1] = Math.sin(r) * zScale;\n out[2] = z * scale;\n return out;\n}\n\n/**\n * Transforms the vec3 with a mat4.\n * 4th vector component is implicitly '1'\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the vector to transform\n * @param {mat4} m matrix to transform with\n * @returns {vec3} out\n */\nfunction transformMat4(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n var w = m[3] * x + m[7] * y + m[11] * z + m[15];\n w = w || 1.0;\n out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;\n out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;\n out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;\n return out;\n}\n\n/**\n * Transforms the vec3 with a mat3.\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the vector to transform\n * @param {mat3} m the 3x3 matrix to transform with\n * @returns {vec3} out\n */\nfunction transformMat3(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n out[0] = x * m[0] + y * m[3] + z * m[6];\n out[1] = x * m[1] + y * m[4] + z * m[7];\n out[2] = x * m[2] + y * m[5] + z * m[8];\n return out;\n}\n\n/**\n * Transforms the vec3 with a quat\n * Can also be used for dual quaternions. (Multiply it with the real part)\n *\n * @param {vec3} out the receiving vector\n * @param {vec3} a the vector to transform\n * @param {quat} q quaternion to transform with\n * @returns {vec3} out\n */\nfunction transformQuat(out, a, q) {\n // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3];\n var x = a[0],\n y = a[1],\n z = a[2];\n // var qvec = [qx, qy, qz];\n // var uv = vec3.cross([], qvec, a);\n var uvx = qy * z - qz * y,\n uvy = qz * x - qx * z,\n uvz = qx * y - qy * x;\n // var uuv = vec3.cross([], qvec, uv);\n var uuvx = qy * uvz - qz * uvy,\n uuvy = qz * uvx - qx * uvz,\n uuvz = qx * uvy - qy * uvx;\n // vec3.scale(uv, uv, 2 * w);\n var w2 = qw * 2;\n uvx *= w2;\n uvy *= w2;\n uvz *= w2;\n // vec3.scale(uuv, uuv, 2);\n uuvx *= 2;\n uuvy *= 2;\n uuvz *= 2;\n // return vec3.add(out, a, vec3.add(out, uv, uuv));\n out[0] = x + uvx + uuvx;\n out[1] = y + uvy + uuvy;\n out[2] = z + uvz + uuvz;\n return out;\n}\n\n/**\n * Rotate a 3D vector around the x-axis\n * @param {vec3} out The receiving vec3\n * @param {vec3} a The vec3 point to rotate\n * @param {vec3} b The origin of the rotation\n * @param {Number} c The angle of rotation\n * @returns {vec3} out\n */\nfunction rotateX(out, a, b, c) {\n var p = [],\n r = [];\n //Translate point to the origin\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2];\n\n //perform rotation\n r[0] = p[0];\n r[1] = p[1] * Math.cos(c) - p[2] * Math.sin(c);\n r[2] = p[1] * Math.sin(c) + p[2] * Math.cos(c);\n\n //translate to correct position\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n\n return out;\n}\n\n/**\n * Rotate a 3D vector around the y-axis\n * @param {vec3} out The receiving vec3\n * @param {vec3} a The vec3 point to rotate\n * @param {vec3} b The origin of the rotation\n * @param {Number} c The angle of rotation\n * @returns {vec3} out\n */\nfunction rotateY(out, a, b, c) {\n var p = [],\n r = [];\n //Translate point to the origin\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2];\n\n //perform rotation\n r[0] = p[2] * Math.sin(c) + p[0] * Math.cos(c);\n r[1] = p[1];\n r[2] = p[2] * Math.cos(c) - p[0] * Math.sin(c);\n\n //translate to correct position\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n\n return out;\n}\n\n/**\n * Rotate a 3D vector around the z-axis\n * @param {vec3} out The receiving vec3\n * @param {vec3} a The vec3 point to rotate\n * @param {vec3} b The origin of the rotation\n * @param {Number} c The angle of rotation\n * @returns {vec3} out\n */\nfunction rotateZ(out, a, b, c) {\n var p = [],\n r = [];\n //Translate point to the origin\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2];\n\n //perform rotation\n r[0] = p[0] * Math.cos(c) - p[1] * Math.sin(c);\n r[1] = p[0] * Math.sin(c) + p[1] * Math.cos(c);\n r[2] = p[2];\n\n //translate to correct position\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n\n return out;\n}\n\n/**\n * Get the angle between two 3D vectors\n * @param {vec3} a The first operand\n * @param {vec3} b The second operand\n * @returns {Number} The angle in radians\n */\nfunction angle(a, b) {\n var tempA = fromValues(a[0], a[1], a[2]);\n var tempB = fromValues(b[0], b[1], b[2]);\n\n normalize(tempA, tempA);\n normalize(tempB, tempB);\n\n var cosine = dot(tempA, tempB);\n\n if (cosine > 1.0) {\n return 0;\n } else if (cosine < -1.0) {\n return Math.PI;\n } else {\n return Math.acos(cosine);\n }\n}\n\n/**\n * Returns a string representation of a vector\n *\n * @param {vec3} a vector to represent as a string\n * @returns {String} string representation of the vector\n */\nfunction str(a) {\n return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';\n}\n\n/**\n * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)\n *\n * @param {vec3} a The first vector.\n * @param {vec3} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];\n}\n\n/**\n * Returns whether or not the vectors have approximately the same elements in the same position.\n *\n * @param {vec3} a The first vector.\n * @param {vec3} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));\n}\n\n/**\n * Alias for {@link vec3.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n/**\n * Alias for {@link vec3.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link vec3.divide}\n * @function\n */\nvar div = exports.div = divide;\n\n/**\n * Alias for {@link vec3.distance}\n * @function\n */\nvar dist = exports.dist = distance;\n\n/**\n * Alias for {@link vec3.squaredDistance}\n * @function\n */\nvar sqrDist = exports.sqrDist = squaredDistance;\n\n/**\n * Alias for {@link vec3.length}\n * @function\n */\nvar len = exports.len = length;\n\n/**\n * Alias for {@link vec3.squaredLength}\n * @function\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\n * Perform some operation over an array of vec3s.\n *\n * @param {Array} a the array of vectors to iterate over\n * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed\n * @param {Number} offset Number of elements to skip at the beginning of the array\n * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array\n * @param {Function} fn Function to call for each vector in the array\n * @param {Object} [arg] additional argument to pass to fn\n * @returns {Array} a\n * @function\n */\nvar forEach = exports.forEach = function () {\n var vec = create();\n\n return function (a, stride, offset, count, fn, arg) {\n var i = void 0,\n l = void 0;\n if (!stride) {\n stride = 3;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];\n fn(vec, vec, arg);\n a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];\n }\n\n return a;\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/vec3.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.length = length;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.cross = cross;\nexports.lerp = lerp;\nexports.hermite = hermite;\nexports.bezier = bezier;\nexports.random = random;\nexports.transformMat4 = transformMat4;\nexports.transformMat3 = transformMat3;\nexports.transformQuat = transformQuat;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.angle = angle;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * 3 Dimensional Vector\r\n * @module vec3\r\n */\n\n/**\r\n * Creates a new, empty vec3\r\n *\r\n * @returns {vec3} a new 3D vector\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n return out;\n}\n\n/**\r\n * Creates a new vec3 initialized with values from an existing vector\r\n *\r\n * @param {vec3} a vector to clone\r\n * @returns {vec3} a new 3D vector\r\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n\n/**\r\n * Calculates the length of a vec3\r\n *\r\n * @param {vec3} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\nfunction length(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return Math.sqrt(x * x + y * y + z * z);\n}\n\n/**\r\n * Creates a new vec3 initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @returns {vec3} a new 3D vector\r\n */\nfunction fromValues(x, y, z) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n\n/**\r\n * Copy the values from one vec3 to another\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the source vector\r\n * @returns {vec3} out\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n\n/**\r\n * Set the components of a vec3 to the given values\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @returns {vec3} out\r\n */\nfunction set(out, x, y, z) {\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n\n/**\r\n * Adds two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n return out;\n}\n\n/**\r\n * Subtracts vector b from vector a\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n return out;\n}\n\n/**\r\n * Multiplies two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n out[2] = a[2] * b[2];\n return out;\n}\n\n/**\r\n * Divides two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n out[2] = a[2] / b[2];\n return out;\n}\n\n/**\r\n * Math.ceil the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a vector to ceil\r\n * @returns {vec3} out\r\n */\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n out[2] = Math.ceil(a[2]);\n return out;\n}\n\n/**\r\n * Math.floor the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a vector to floor\r\n * @returns {vec3} out\r\n */\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n out[2] = Math.floor(a[2]);\n return out;\n}\n\n/**\r\n * Returns the minimum of two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n out[2] = Math.min(a[2], b[2]);\n return out;\n}\n\n/**\r\n * Returns the maximum of two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n out[2] = Math.max(a[2], b[2]);\n return out;\n}\n\n/**\r\n * Math.round the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a vector to round\r\n * @returns {vec3} out\r\n */\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n out[2] = Math.round(a[2]);\n return out;\n}\n\n/**\r\n * Scales a vec3 by a scalar number\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {vec3} out\r\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n return out;\n}\n\n/**\r\n * Adds two vec3's after scaling the second operand by a scalar value\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @param {Number} scale the amount to scale b by before adding\r\n * @returns {vec3} out\r\n */\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n return out;\n}\n\n/**\r\n * Calculates the euclidian distance between two vec3's\r\n *\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {Number} distance between a and b\r\n */\nfunction distance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return Math.sqrt(x * x + y * y + z * z);\n}\n\n/**\r\n * Calculates the squared euclidian distance between two vec3's\r\n *\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {Number} squared distance between a and b\r\n */\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return x * x + y * y + z * z;\n}\n\n/**\r\n * Calculates the squared length of a vec3\r\n *\r\n * @param {vec3} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n */\nfunction squaredLength(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return x * x + y * y + z * z;\n}\n\n/**\r\n * Negates the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a vector to negate\r\n * @returns {vec3} out\r\n */\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n return out;\n}\n\n/**\r\n * Returns the inverse of the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a vector to invert\r\n * @returns {vec3} out\r\n */\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n out[2] = 1.0 / a[2];\n return out;\n}\n\n/**\r\n * Normalize a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a vector to normalize\r\n * @returns {vec3} out\r\n */\nfunction normalize(out, a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var len = x * x + y * y + z * z;\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n out[2] = a[2] * len;\n }\n return out;\n}\n\n/**\r\n * Calculates the dot product of two vec3's\r\n *\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {Number} dot product of a and b\r\n */\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];\n}\n\n/**\r\n * Computes the cross product of two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @returns {vec3} out\r\n */\nfunction cross(out, a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2];\n var bx = b[0],\n by = b[1],\n bz = b[2];\n\n out[0] = ay * bz - az * by;\n out[1] = az * bx - ax * bz;\n out[2] = ax * by - ay * bx;\n return out;\n}\n\n/**\r\n * Performs a linear interpolation between two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec3} out\r\n */\nfunction lerp(out, a, b, t) {\n var ax = a[0];\n var ay = a[1];\n var az = a[2];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n out[2] = az + t * (b[2] - az);\n return out;\n}\n\n/**\r\n * Performs a hermite interpolation with two control points\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @param {vec3} c the third operand\r\n * @param {vec3} d the fourth operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec3} out\r\n */\nfunction hermite(out, a, b, c, d, t) {\n var factorTimes2 = t * t;\n var factor1 = factorTimes2 * (2 * t - 3) + 1;\n var factor2 = factorTimes2 * (t - 2) + t;\n var factor3 = factorTimes2 * (t - 1);\n var factor4 = factorTimes2 * (3 - 2 * t);\n\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n\n return out;\n}\n\n/**\r\n * Performs a bezier interpolation with two control points\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the first operand\r\n * @param {vec3} b the second operand\r\n * @param {vec3} c the third operand\r\n * @param {vec3} d the fourth operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec3} out\r\n */\nfunction bezier(out, a, b, c, d, t) {\n var inverseFactor = 1 - t;\n var inverseFactorTimesTwo = inverseFactor * inverseFactor;\n var factorTimes2 = t * t;\n var factor1 = inverseFactorTimesTwo * inverseFactor;\n var factor2 = 3 * t * inverseFactorTimesTwo;\n var factor3 = 3 * factorTimes2 * inverseFactor;\n var factor4 = factorTimes2 * t;\n\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n\n return out;\n}\n\n/**\r\n * Generates a random vector with the given scale\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\r\n * @returns {vec3} out\r\n */\nfunction random(out, scale) {\n scale = scale || 1.0;\n\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n var z = glMatrix.RANDOM() * 2.0 - 1.0;\n var zScale = Math.sqrt(1.0 - z * z) * scale;\n\n out[0] = Math.cos(r) * zScale;\n out[1] = Math.sin(r) * zScale;\n out[2] = z * scale;\n return out;\n}\n\n/**\r\n * Transforms the vec3 with a mat4.\r\n * 4th vector component is implicitly '1'\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the vector to transform\r\n * @param {mat4} m matrix to transform with\r\n * @returns {vec3} out\r\n */\nfunction transformMat4(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n var w = m[3] * x + m[7] * y + m[11] * z + m[15];\n w = w || 1.0;\n out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;\n out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;\n out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;\n return out;\n}\n\n/**\r\n * Transforms the vec3 with a mat3.\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the vector to transform\r\n * @param {mat3} m the 3x3 matrix to transform with\r\n * @returns {vec3} out\r\n */\nfunction transformMat3(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n out[0] = x * m[0] + y * m[3] + z * m[6];\n out[1] = x * m[1] + y * m[4] + z * m[7];\n out[2] = x * m[2] + y * m[5] + z * m[8];\n return out;\n}\n\n/**\r\n * Transforms the vec3 with a quat\r\n * Can also be used for dual quaternions. (Multiply it with the real part)\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {vec3} a the vector to transform\r\n * @param {quat} q quaternion to transform with\r\n * @returns {vec3} out\r\n */\nfunction transformQuat(out, a, q) {\n // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3];\n var x = a[0],\n y = a[1],\n z = a[2];\n // var qvec = [qx, qy, qz];\n // var uv = vec3.cross([], qvec, a);\n var uvx = qy * z - qz * y,\n uvy = qz * x - qx * z,\n uvz = qx * y - qy * x;\n // var uuv = vec3.cross([], qvec, uv);\n var uuvx = qy * uvz - qz * uvy,\n uuvy = qz * uvx - qx * uvz,\n uuvz = qx * uvy - qy * uvx;\n // vec3.scale(uv, uv, 2 * w);\n var w2 = qw * 2;\n uvx *= w2;\n uvy *= w2;\n uvz *= w2;\n // vec3.scale(uuv, uuv, 2);\n uuvx *= 2;\n uuvy *= 2;\n uuvz *= 2;\n // return vec3.add(out, a, vec3.add(out, uv, uuv));\n out[0] = x + uvx + uuvx;\n out[1] = y + uvy + uuvy;\n out[2] = z + uvz + uuvz;\n return out;\n}\n\n/**\r\n * Rotate a 3D vector around the x-axis\r\n * @param {vec3} out The receiving vec3\r\n * @param {vec3} a The vec3 point to rotate\r\n * @param {vec3} b The origin of the rotation\r\n * @param {Number} c The angle of rotation\r\n * @returns {vec3} out\r\n */\nfunction rotateX(out, a, b, c) {\n var p = [],\n r = [];\n //Translate point to the origin\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2];\n\n //perform rotation\n r[0] = p[0];\n r[1] = p[1] * Math.cos(c) - p[2] * Math.sin(c);\n r[2] = p[1] * Math.sin(c) + p[2] * Math.cos(c);\n\n //translate to correct position\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n\n return out;\n}\n\n/**\r\n * Rotate a 3D vector around the y-axis\r\n * @param {vec3} out The receiving vec3\r\n * @param {vec3} a The vec3 point to rotate\r\n * @param {vec3} b The origin of the rotation\r\n * @param {Number} c The angle of rotation\r\n * @returns {vec3} out\r\n */\nfunction rotateY(out, a, b, c) {\n var p = [],\n r = [];\n //Translate point to the origin\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2];\n\n //perform rotation\n r[0] = p[2] * Math.sin(c) + p[0] * Math.cos(c);\n r[1] = p[1];\n r[2] = p[2] * Math.cos(c) - p[0] * Math.sin(c);\n\n //translate to correct position\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n\n return out;\n}\n\n/**\r\n * Rotate a 3D vector around the z-axis\r\n * @param {vec3} out The receiving vec3\r\n * @param {vec3} a The vec3 point to rotate\r\n * @param {vec3} b The origin of the rotation\r\n * @param {Number} c The angle of rotation\r\n * @returns {vec3} out\r\n */\nfunction rotateZ(out, a, b, c) {\n var p = [],\n r = [];\n //Translate point to the origin\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2];\n\n //perform rotation\n r[0] = p[0] * Math.cos(c) - p[1] * Math.sin(c);\n r[1] = p[0] * Math.sin(c) + p[1] * Math.cos(c);\n r[2] = p[2];\n\n //translate to correct position\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n\n return out;\n}\n\n/**\r\n * Get the angle between two 3D vectors\r\n * @param {vec3} a The first operand\r\n * @param {vec3} b The second operand\r\n * @returns {Number} The angle in radians\r\n */\nfunction angle(a, b) {\n var tempA = fromValues(a[0], a[1], a[2]);\n var tempB = fromValues(b[0], b[1], b[2]);\n\n normalize(tempA, tempA);\n normalize(tempB, tempB);\n\n var cosine = dot(tempA, tempB);\n\n if (cosine > 1.0) {\n return 0;\n } else if (cosine < -1.0) {\n return Math.PI;\n } else {\n return Math.acos(cosine);\n }\n}\n\n/**\r\n * Returns a string representation of a vector\r\n *\r\n * @param {vec3} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\nfunction str(a) {\n return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';\n}\n\n/**\r\n * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {vec3} a The first vector.\r\n * @param {vec3} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];\n}\n\n/**\r\n * Returns whether or not the vectors have approximately the same elements in the same position.\r\n *\r\n * @param {vec3} a The first vector.\r\n * @param {vec3} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));\n}\n\n/**\r\n * Alias for {@link vec3.subtract}\r\n * @function\r\n */\nvar sub = exports.sub = subtract;\n\n/**\r\n * Alias for {@link vec3.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Alias for {@link vec3.divide}\r\n * @function\r\n */\nvar div = exports.div = divide;\n\n/**\r\n * Alias for {@link vec3.distance}\r\n * @function\r\n */\nvar dist = exports.dist = distance;\n\n/**\r\n * Alias for {@link vec3.squaredDistance}\r\n * @function\r\n */\nvar sqrDist = exports.sqrDist = squaredDistance;\n\n/**\r\n * Alias for {@link vec3.length}\r\n * @function\r\n */\nvar len = exports.len = length;\n\n/**\r\n * Alias for {@link vec3.squaredLength}\r\n * @function\r\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\r\n * Perform some operation over an array of vec3s.\r\n *\r\n * @param {Array} a the array of vectors to iterate over\r\n * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed\r\n * @param {Number} offset Number of elements to skip at the beginning of the array\r\n * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array\r\n * @param {Function} fn Function to call for each vector in the array\r\n * @param {Object} [arg] additional argument to pass to fn\r\n * @returns {Array} a\r\n * @function\r\n */\nvar forEach = exports.forEach = function () {\n var vec = create();\n\n return function (a, stride, offset, count, fn, arg) {\n var i = void 0,\n l = void 0;\n if (!stride) {\n stride = 3;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];\n fn(vec, vec, arg);\n a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];\n }\n\n return a;\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/vec3.js?"); /***/ }), @@ -237,7 +252,7 @@ eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\n /***/ (function(module, exports, __webpack_require__) { "use strict"; -eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.length = length;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.lerp = lerp;\nexports.random = random;\nexports.transformMat4 = transformMat4;\nexports.transformQuat = transformQuat;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\n * 4 Dimensional Vector\n * @module vec4\n */\n\n/**\n * Creates a new, empty vec4\n *\n * @returns {vec4} a new 4D vector\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n return out;\n}\n\n/**\n * Creates a new vec4 initialized with values from an existing vector\n *\n * @param {vec4} a vector to clone\n * @returns {vec4} a new 4D vector\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\n * Creates a new vec4 initialized with the given values\n *\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @param {Number} w W component\n * @returns {vec4} a new 4D vector\n */\nfunction fromValues(x, y, z, w) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = w;\n return out;\n}\n\n/**\n * Copy the values from one vec4 to another\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the source vector\n * @returns {vec4} out\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\n * Set the components of a vec4 to the given values\n *\n * @param {vec4} out the receiving vector\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @param {Number} w W component\n * @returns {vec4} out\n */\nfunction set(out, x, y, z, w) {\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = w;\n return out;\n}\n\n/**\n * Adds two vec4's\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {vec4} out\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n return out;\n}\n\n/**\n * Subtracts vector b from vector a\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {vec4} out\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n return out;\n}\n\n/**\n * Multiplies two vec4's\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {vec4} out\n */\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n out[2] = a[2] * b[2];\n out[3] = a[3] * b[3];\n return out;\n}\n\n/**\n * Divides two vec4's\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {vec4} out\n */\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n out[2] = a[2] / b[2];\n out[3] = a[3] / b[3];\n return out;\n}\n\n/**\n * Math.ceil the components of a vec4\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a vector to ceil\n * @returns {vec4} out\n */\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n out[2] = Math.ceil(a[2]);\n out[3] = Math.ceil(a[3]);\n return out;\n}\n\n/**\n * Math.floor the components of a vec4\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a vector to floor\n * @returns {vec4} out\n */\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n out[2] = Math.floor(a[2]);\n out[3] = Math.floor(a[3]);\n return out;\n}\n\n/**\n * Returns the minimum of two vec4's\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {vec4} out\n */\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n out[2] = Math.min(a[2], b[2]);\n out[3] = Math.min(a[3], b[3]);\n return out;\n}\n\n/**\n * Returns the maximum of two vec4's\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {vec4} out\n */\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n out[2] = Math.max(a[2], b[2]);\n out[3] = Math.max(a[3], b[3]);\n return out;\n}\n\n/**\n * Math.round the components of a vec4\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a vector to round\n * @returns {vec4} out\n */\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n out[2] = Math.round(a[2]);\n out[3] = Math.round(a[3]);\n return out;\n}\n\n/**\n * Scales a vec4 by a scalar number\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the vector to scale\n * @param {Number} b amount to scale the vector by\n * @returns {vec4} out\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n return out;\n}\n\n/**\n * Adds two vec4's after scaling the second operand by a scalar value\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @param {Number} scale the amount to scale b by before adding\n * @returns {vec4} out\n */\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n return out;\n}\n\n/**\n * Calculates the euclidian distance between two vec4's\n *\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {Number} distance between a and b\n */\nfunction distance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n var w = b[3] - a[3];\n return Math.sqrt(x * x + y * y + z * z + w * w);\n}\n\n/**\n * Calculates the squared euclidian distance between two vec4's\n *\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {Number} squared distance between a and b\n */\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n var w = b[3] - a[3];\n return x * x + y * y + z * z + w * w;\n}\n\n/**\n * Calculates the length of a vec4\n *\n * @param {vec4} a vector to calculate length of\n * @returns {Number} length of a\n */\nfunction length(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n return Math.sqrt(x * x + y * y + z * z + w * w);\n}\n\n/**\n * Calculates the squared length of a vec4\n *\n * @param {vec4} a vector to calculate squared length of\n * @returns {Number} squared length of a\n */\nfunction squaredLength(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n return x * x + y * y + z * z + w * w;\n}\n\n/**\n * Negates the components of a vec4\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a vector to negate\n * @returns {vec4} out\n */\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = -a[3];\n return out;\n}\n\n/**\n * Returns the inverse of the components of a vec4\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a vector to invert\n * @returns {vec4} out\n */\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n out[2] = 1.0 / a[2];\n out[3] = 1.0 / a[3];\n return out;\n}\n\n/**\n * Normalize a vec4\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a vector to normalize\n * @returns {vec4} out\n */\nfunction normalize(out, a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n var len = x * x + y * y + z * z + w * w;\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n out[0] = x * len;\n out[1] = y * len;\n out[2] = z * len;\n out[3] = w * len;\n }\n return out;\n}\n\n/**\n * Calculates the dot product of two vec4's\n *\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @returns {Number} dot product of a and b\n */\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];\n}\n\n/**\n * Performs a linear interpolation between two vec4's\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the first operand\n * @param {vec4} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec4} out\n */\nfunction lerp(out, a, b, t) {\n var ax = a[0];\n var ay = a[1];\n var az = a[2];\n var aw = a[3];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n out[2] = az + t * (b[2] - az);\n out[3] = aw + t * (b[3] - aw);\n return out;\n}\n\n/**\n * Generates a random vector with the given scale\n *\n * @param {vec4} out the receiving vector\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\n * @returns {vec4} out\n */\nfunction random(out, vectorScale) {\n vectorScale = vectorScale || 1.0;\n\n // Marsaglia, George. Choosing a Point from the Surface of a\n // Sphere. Ann. Math. Statist. 43 (1972), no. 2, 645--646.\n // http://projecteuclid.org/euclid.aoms/1177692644;\n var v1, v2, v3, v4;\n var s1, s2;\n do {\n v1 = glMatrix.RANDOM() * 2 - 1;\n v2 = glMatrix.RANDOM() * 2 - 1;\n s1 = v1 * v1 + v2 * v2;\n } while (s1 >= 1);\n do {\n v3 = glMatrix.RANDOM() * 2 - 1;\n v4 = glMatrix.RANDOM() * 2 - 1;\n s2 = v3 * v3 + v4 * v4;\n } while (s2 >= 1);\n\n var d = Math.sqrt((1 - s1) / s2);\n out[0] = scale * v1;\n out[1] = scale * v2;\n out[2] = scale * v3 * d;\n out[3] = scale * v4 * d;\n return out;\n}\n\n/**\n * Transforms the vec4 with a mat4.\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the vector to transform\n * @param {mat4} m matrix to transform with\n * @returns {vec4} out\n */\nfunction transformMat4(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2],\n w = a[3];\n out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;\n out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;\n out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;\n out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;\n return out;\n}\n\n/**\n * Transforms the vec4 with a quat\n *\n * @param {vec4} out the receiving vector\n * @param {vec4} a the vector to transform\n * @param {quat} q quaternion to transform with\n * @returns {vec4} out\n */\nfunction transformQuat(out, a, q) {\n var x = a[0],\n y = a[1],\n z = a[2];\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3];\n\n // calculate quat * vec\n var ix = qw * x + qy * z - qz * y;\n var iy = qw * y + qz * x - qx * z;\n var iz = qw * z + qx * y - qy * x;\n var iw = -qx * x - qy * y - qz * z;\n\n // calculate result * inverse quat\n out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;\n out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;\n out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;\n out[3] = a[3];\n return out;\n}\n\n/**\n * Returns a string representation of a vector\n *\n * @param {vec4} a vector to represent as a string\n * @returns {String} string representation of the vector\n */\nfunction str(a) {\n return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';\n}\n\n/**\n * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)\n *\n * @param {vec4} a The first vector.\n * @param {vec4} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];\n}\n\n/**\n * Returns whether or not the vectors have approximately the same elements in the same position.\n *\n * @param {vec4} a The first vector.\n * @param {vec4} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));\n}\n\n/**\n * Alias for {@link vec4.subtract}\n * @function\n */\nvar sub = exports.sub = subtract;\n\n/**\n * Alias for {@link vec4.multiply}\n * @function\n */\nvar mul = exports.mul = multiply;\n\n/**\n * Alias for {@link vec4.divide}\n * @function\n */\nvar div = exports.div = divide;\n\n/**\n * Alias for {@link vec4.distance}\n * @function\n */\nvar dist = exports.dist = distance;\n\n/**\n * Alias for {@link vec4.squaredDistance}\n * @function\n */\nvar sqrDist = exports.sqrDist = squaredDistance;\n\n/**\n * Alias for {@link vec4.length}\n * @function\n */\nvar len = exports.len = length;\n\n/**\n * Alias for {@link vec4.squaredLength}\n * @function\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\n * Perform some operation over an array of vec4s.\n *\n * @param {Array} a the array of vectors to iterate over\n * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed\n * @param {Number} offset Number of elements to skip at the beginning of the array\n * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array\n * @param {Function} fn Function to call for each vector in the array\n * @param {Object} [arg] additional argument to pass to fn\n * @returns {Array} a\n * @function\n */\nvar forEach = exports.forEach = function () {\n var vec = create();\n\n return function (a, stride, offset, count, fn, arg) {\n var i = void 0,\n l = void 0;\n if (!stride) {\n stride = 4;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];vec[3] = a[i + 3];\n fn(vec, vec, arg);\n a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];a[i + 3] = vec[3];\n }\n\n return a;\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/vec4.js?"); +eval("\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined;\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.length = length;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.lerp = lerp;\nexports.random = random;\nexports.transformMat4 = transformMat4;\nexports.transformQuat = transformQuat;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\n\nvar _common = __webpack_require__(/*! ./common.js */ \"./src/gl-matrix/common.js\");\n\nvar glMatrix = _interopRequireWildcard(_common);\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }\n\n/**\r\n * 4 Dimensional Vector\r\n * @module vec4\r\n */\n\n/**\r\n * Creates a new, empty vec4\r\n *\r\n * @returns {vec4} a new 4D vector\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n return out;\n}\n\n/**\r\n * Creates a new vec4 initialized with values from an existing vector\r\n *\r\n * @param {vec4} a vector to clone\r\n * @returns {vec4} a new 4D vector\r\n */\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\r\n * Creates a new vec4 initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {vec4} a new 4D vector\r\n */\nfunction fromValues(x, y, z, w) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = w;\n return out;\n}\n\n/**\r\n * Copy the values from one vec4 to another\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the source vector\r\n * @returns {vec4} out\r\n */\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n\n/**\r\n * Set the components of a vec4 to the given values\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {vec4} out\r\n */\nfunction set(out, x, y, z, w) {\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = w;\n return out;\n}\n\n/**\r\n * Adds two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {vec4} out\r\n */\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n return out;\n}\n\n/**\r\n * Subtracts vector b from vector a\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {vec4} out\r\n */\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n return out;\n}\n\n/**\r\n * Multiplies two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {vec4} out\r\n */\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n out[2] = a[2] * b[2];\n out[3] = a[3] * b[3];\n return out;\n}\n\n/**\r\n * Divides two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {vec4} out\r\n */\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n out[2] = a[2] / b[2];\n out[3] = a[3] / b[3];\n return out;\n}\n\n/**\r\n * Math.ceil the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a vector to ceil\r\n * @returns {vec4} out\r\n */\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n out[2] = Math.ceil(a[2]);\n out[3] = Math.ceil(a[3]);\n return out;\n}\n\n/**\r\n * Math.floor the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a vector to floor\r\n * @returns {vec4} out\r\n */\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n out[2] = Math.floor(a[2]);\n out[3] = Math.floor(a[3]);\n return out;\n}\n\n/**\r\n * Returns the minimum of two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {vec4} out\r\n */\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n out[2] = Math.min(a[2], b[2]);\n out[3] = Math.min(a[3], b[3]);\n return out;\n}\n\n/**\r\n * Returns the maximum of two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {vec4} out\r\n */\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n out[2] = Math.max(a[2], b[2]);\n out[3] = Math.max(a[3], b[3]);\n return out;\n}\n\n/**\r\n * Math.round the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a vector to round\r\n * @returns {vec4} out\r\n */\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n out[2] = Math.round(a[2]);\n out[3] = Math.round(a[3]);\n return out;\n}\n\n/**\r\n * Scales a vec4 by a scalar number\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {vec4} out\r\n */\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n return out;\n}\n\n/**\r\n * Adds two vec4's after scaling the second operand by a scalar value\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @param {Number} scale the amount to scale b by before adding\r\n * @returns {vec4} out\r\n */\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n return out;\n}\n\n/**\r\n * Calculates the euclidian distance between two vec4's\r\n *\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {Number} distance between a and b\r\n */\nfunction distance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n var w = b[3] - a[3];\n return Math.sqrt(x * x + y * y + z * z + w * w);\n}\n\n/**\r\n * Calculates the squared euclidian distance between two vec4's\r\n *\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {Number} squared distance between a and b\r\n */\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n var w = b[3] - a[3];\n return x * x + y * y + z * z + w * w;\n}\n\n/**\r\n * Calculates the length of a vec4\r\n *\r\n * @param {vec4} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\nfunction length(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n return Math.sqrt(x * x + y * y + z * z + w * w);\n}\n\n/**\r\n * Calculates the squared length of a vec4\r\n *\r\n * @param {vec4} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n */\nfunction squaredLength(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n return x * x + y * y + z * z + w * w;\n}\n\n/**\r\n * Negates the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a vector to negate\r\n * @returns {vec4} out\r\n */\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = -a[3];\n return out;\n}\n\n/**\r\n * Returns the inverse of the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a vector to invert\r\n * @returns {vec4} out\r\n */\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n out[2] = 1.0 / a[2];\n out[3] = 1.0 / a[3];\n return out;\n}\n\n/**\r\n * Normalize a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a vector to normalize\r\n * @returns {vec4} out\r\n */\nfunction normalize(out, a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n var len = x * x + y * y + z * z + w * w;\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n out[0] = x * len;\n out[1] = y * len;\n out[2] = z * len;\n out[3] = w * len;\n }\n return out;\n}\n\n/**\r\n * Calculates the dot product of two vec4's\r\n *\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @returns {Number} dot product of a and b\r\n */\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];\n}\n\n/**\r\n * Performs a linear interpolation between two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the first operand\r\n * @param {vec4} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec4} out\r\n */\nfunction lerp(out, a, b, t) {\n var ax = a[0];\n var ay = a[1];\n var az = a[2];\n var aw = a[3];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n out[2] = az + t * (b[2] - az);\n out[3] = aw + t * (b[3] - aw);\n return out;\n}\n\n/**\r\n * Generates a random vector with the given scale\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\r\n * @returns {vec4} out\r\n */\nfunction random(out, scale) {\n scale = scale || 1.0;\n\n // Marsaglia, George. Choosing a Point from the Surface of a\n // Sphere. Ann. Math. Statist. 43 (1972), no. 2, 645--646.\n // http://projecteuclid.org/euclid.aoms/1177692644;\n var v1, v2, v3, v4;\n var s1, s2;\n do {\n v1 = glMatrix.RANDOM() * 2 - 1;\n v2 = glMatrix.RANDOM() * 2 - 1;\n s1 = v1 * v1 + v2 * v2;\n } while (s1 >= 1);\n do {\n v3 = glMatrix.RANDOM() * 2 - 1;\n v4 = glMatrix.RANDOM() * 2 - 1;\n s2 = v3 * v3 + v4 * v4;\n } while (s2 >= 1);\n\n var d = Math.sqrt((1 - s1) / s2);\n out[0] = scale * v1;\n out[1] = scale * v2;\n out[2] = scale * v3 * d;\n out[3] = scale * v4 * d;\n return out;\n}\n\n/**\r\n * Transforms the vec4 with a mat4.\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the vector to transform\r\n * @param {mat4} m matrix to transform with\r\n * @returns {vec4} out\r\n */\nfunction transformMat4(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2],\n w = a[3];\n out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;\n out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;\n out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;\n out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;\n return out;\n}\n\n/**\r\n * Transforms the vec4 with a quat\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {vec4} a the vector to transform\r\n * @param {quat} q quaternion to transform with\r\n * @returns {vec4} out\r\n */\nfunction transformQuat(out, a, q) {\n var x = a[0],\n y = a[1],\n z = a[2];\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3];\n\n // calculate quat * vec\n var ix = qw * x + qy * z - qz * y;\n var iy = qw * y + qz * x - qx * z;\n var iz = qw * z + qx * y - qy * x;\n var iw = -qx * x - qy * y - qz * z;\n\n // calculate result * inverse quat\n out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;\n out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;\n out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;\n out[3] = a[3];\n return out;\n}\n\n/**\r\n * Returns a string representation of a vector\r\n *\r\n * @param {vec4} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\nfunction str(a) {\n return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';\n}\n\n/**\r\n * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {vec4} a The first vector.\r\n * @param {vec4} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];\n}\n\n/**\r\n * Returns whether or not the vectors have approximately the same elements in the same position.\r\n *\r\n * @param {vec4} a The first vector.\r\n * @param {vec4} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));\n}\n\n/**\r\n * Alias for {@link vec4.subtract}\r\n * @function\r\n */\nvar sub = exports.sub = subtract;\n\n/**\r\n * Alias for {@link vec4.multiply}\r\n * @function\r\n */\nvar mul = exports.mul = multiply;\n\n/**\r\n * Alias for {@link vec4.divide}\r\n * @function\r\n */\nvar div = exports.div = divide;\n\n/**\r\n * Alias for {@link vec4.distance}\r\n * @function\r\n */\nvar dist = exports.dist = distance;\n\n/**\r\n * Alias for {@link vec4.squaredDistance}\r\n * @function\r\n */\nvar sqrDist = exports.sqrDist = squaredDistance;\n\n/**\r\n * Alias for {@link vec4.length}\r\n * @function\r\n */\nvar len = exports.len = length;\n\n/**\r\n * Alias for {@link vec4.squaredLength}\r\n * @function\r\n */\nvar sqrLen = exports.sqrLen = squaredLength;\n\n/**\r\n * Perform some operation over an array of vec4s.\r\n *\r\n * @param {Array} a the array of vectors to iterate over\r\n * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed\r\n * @param {Number} offset Number of elements to skip at the beginning of the array\r\n * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array\r\n * @param {Function} fn Function to call for each vector in the array\r\n * @param {Object} [arg] additional argument to pass to fn\r\n * @returns {Array} a\r\n * @function\r\n */\nvar forEach = exports.forEach = function () {\n var vec = create();\n\n return function (a, stride, offset, count, fn, arg) {\n var i = void 0,\n l = void 0;\n if (!stride) {\n stride = 4;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];vec[3] = a[i + 3];\n fn(vec, vec, arg);\n a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];a[i + 3] = vec[3];\n }\n\n return a;\n };\n}();\n\n//# sourceURL=webpack:///./src/gl-matrix/vec4.js?"); /***/ }) diff --git a/spec/gl-matrix/mat4-spec.js b/spec/gl-matrix/mat4-spec.js index a3e91442..513000c6 100644 --- a/spec/gl-matrix/mat4-spec.js +++ b/spec/gl-matrix/mat4-spec.js @@ -658,6 +658,26 @@ function buildMat4Tests() { 0, 0, -0.2001, 0 ]); }); }); + + describe("with no far plane, 45deg fovy, and realistic aspect ratio", function() { + beforeEach(function() { result = mat4.perspective(out, 45 * Math.PI / 180.0, 640/480, 0.1); }); + it("should calculate correct matrix", function() { expect(result).toBeEqualish([ + 1.81066, 0, 0, 0, + 0, 2.414213, 0, 0, + 0, 0, -1, -1, + 0, 0, -0.2, 0 + ]); }); + }); + + describe("with infinite far plane, 45deg fovy, and realistic aspect ratio", function() { + beforeEach(function() { result = mat4.perspective(out, 45 * Math.PI / 180.0, 640/480, 0.1, Infinity); }); + it("should calculate correct matrix", function() { expect(result).toBeEqualish([ + 1.81066, 0, 0, 0, + 0, 2.414213, 0, 0, + 0, 0, -1, -1, + 0, 0, -0.2, 0 + ]); }); + }); }); describe("ortho", function() { diff --git a/src/gl-matrix/mat4.js b/src/gl-matrix/mat4.js index b2993718..1fe87205 100644 --- a/src/gl-matrix/mat4.js +++ b/src/gl-matrix/mat4.js @@ -1256,18 +1256,18 @@ export function frustum(out, left, right, bottom, top, near, far) { } /** - * Generates a perspective projection matrix with the given bounds + * Generates a perspective projection matrix with the given bounds. + * Passing null/undefined/no value for far will generate infinite projection matrix. * * @param {mat4} out mat4 frustum matrix will be written into * @param {number} fovy Vertical field of view in radians * @param {number} aspect Aspect ratio. typically viewport width/height * @param {number} near Near bound of the frustum - * @param {number} far Far bound of the frustum + * @param {number} far Far bound of the frustum, can be null or Infinity * @returns {mat4} out */ export function perspective(out, fovy, aspect, near, far) { - let f = 1.0 / Math.tan(fovy / 2); - let nf = 1 / (near - far); + let f = 1.0 / Math.tan(fovy / 2), nf; out[0] = f / aspect; out[1] = 0; out[2] = 0; @@ -1278,12 +1278,18 @@ export function perspective(out, fovy, aspect, near, far) { out[7] = 0; out[8] = 0; out[9] = 0; - out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; - out[14] = (2 * far * near) * nf; out[15] = 0; + if (far != null && far !== Infinity) { + nf = 1 / (near - far); + out[10] = (far + near) * nf; + out[14] = (2 * far * near) * nf; + } else { + out[10] = -1; + out[14] = -2 * near; + } return out; }