forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolverKernel.cuh
181 lines (160 loc) · 6.88 KB
/
solverKernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "common.h"
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
///////////////////////////////////////////////////////////////////////////////
/// \brief one iteration of classical Horn-Schunck method, CUDA kernel.
///
/// It is one iteration of Jacobi method for a corresponding linear system.
/// Template parameters are describe CTA size
/// \param[in] du0 current horizontal displacement approximation
/// \param[in] dv0 current vertical displacement approximation
/// \param[in] Ix image x derivative
/// \param[in] Iy image y derivative
/// \param[in] Iz temporal derivative
/// \param[in] w width
/// \param[in] h height
/// \param[in] s stride
/// \param[in] alpha degree of smoothness
/// \param[out] du1 new horizontal displacement approximation
/// \param[out] dv1 new vertical displacement approximation
///////////////////////////////////////////////////////////////////////////////
template <int bx, int by>
__global__ void JacobiIteration(const float *du0, const float *dv0,
const float *Ix, const float *Iy,
const float *Iz, int w, int h, int s,
float alpha, float *du1, float *dv1) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
volatile __shared__ float du[(bx + 2) * (by + 2)];
volatile __shared__ float dv[(bx + 2) * (by + 2)];
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
// position within global memory array
const int pos = min(ix, w - 1) + min(iy, h - 1) * s;
// position within shared memory array
const int shMemPos = threadIdx.x + 1 + (threadIdx.y + 1) * (bx + 2);
// Load data to shared memory.
// load tile being processed
du[shMemPos] = du0[pos];
dv[shMemPos] = dv0[pos];
// load necessary neighbouring elements
// We clamp out-of-range coordinates.
// It is equivalent to mirroring
// because we access data only one step away from borders.
if (threadIdx.y == 0) {
// beginning of the tile
const int bsx = blockIdx.x * blockDim.x;
const int bsy = blockIdx.y * blockDim.y;
// element position within matrix
int x, y;
// element position within linear array
// gm - global memory
// sm - shared memory
int gmPos, smPos;
x = min(bsx + threadIdx.x, w - 1);
// row just below the tile
y = max(bsy - 1, 0);
gmPos = y * s + x;
smPos = threadIdx.x + 1;
du[smPos] = du0[gmPos];
dv[smPos] = dv0[gmPos];
// row above the tile
y = min(bsy + by, h - 1);
smPos += (by + 1) * (bx + 2);
gmPos = y * s + x;
du[smPos] = du0[gmPos];
dv[smPos] = dv0[gmPos];
} else if (threadIdx.y == 1) {
// beginning of the tile
const int bsx = blockIdx.x * blockDim.x;
const int bsy = blockIdx.y * blockDim.y;
// element position within matrix
int x, y;
// element position within linear array
// gm - global memory
// sm - shared memory
int gmPos, smPos;
y = min(bsy + threadIdx.x, h - 1);
// column to the left
x = max(bsx - 1, 0);
smPos = bx + 2 + threadIdx.x * (bx + 2);
gmPos = x + y * s;
// check if we are within tile
if (threadIdx.x < by) {
du[smPos] = du0[gmPos];
dv[smPos] = dv0[gmPos];
// column to the right
x = min(bsx + bx, w - 1);
gmPos = y * s + x;
smPos += bx + 1;
du[smPos] = du0[gmPos];
dv[smPos] = dv0[gmPos];
}
}
cg::sync(cta);
if (ix >= w || iy >= h) return;
// now all necessary data are loaded to shared memory
int left, right, up, down;
left = shMemPos - 1;
right = shMemPos + 1;
up = shMemPos + bx + 2;
down = shMemPos - bx - 2;
float sumU = (du[left] + du[right] + du[up] + du[down]) * 0.25f;
float sumV = (dv[left] + dv[right] + dv[up] + dv[down]) * 0.25f;
float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) /
(Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha);
du1[pos] = sumU - Ix[pos] * frac;
dv1[pos] = sumV - Iy[pos] * frac;
}
///////////////////////////////////////////////////////////////////////////////
/// \brief one iteration of classical Horn-Schunck method, CUDA kernel wrapper.
///
/// It is one iteration of Jacobi method for a corresponding linear system.
/// \param[in] du0 current horizontal displacement approximation
/// \param[in] dv0 current vertical displacement approximation
/// \param[in] Ix image x derivative
/// \param[in] Iy image y derivative
/// \param[in] Iz temporal derivative
/// \param[in] w width
/// \param[in] h height
/// \param[in] s stride
/// \param[in] alpha degree of smoothness
/// \param[out] du1 new horizontal displacement approximation
/// \param[out] dv1 new vertical displacement approximation
///////////////////////////////////////////////////////////////////////////////
static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix,
const float *Iy, const float *Iz, int w, int h,
int s, float alpha, float *du1, float *dv1) {
// CTA size
dim3 threads(32, 6);
// grid size
dim3 blocks(iDivUp(w, threads.x), iDivUp(h, threads.y));
JacobiIteration<32, 6><<<blocks, threads>>>(du0, dv0, Ix, Iy, Iz, w, h, s,
alpha, du1, dv1);
}