forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMonteCarlo_kernel.cu
226 lines (196 loc) · 9.67 KB
/
MonteCarlo_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
////////////////////////////////////////////////////////////////////////////////
// Global types
////////////////////////////////////////////////////////////////////////////////
#include <stdlib.h>
#include <stdio.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <curand_kernel.h>
#include "MonteCarlo_common.h"
////////////////////////////////////////////////////////////////////////////////
// Helper reduction template
// Please see the "reduction" CUDA Sample for more information
////////////////////////////////////////////////////////////////////////////////
#include "MonteCarlo_reduction.cuh"
////////////////////////////////////////////////////////////////////////////////
// Internal GPU-side data structures
////////////////////////////////////////////////////////////////////////////////
#define MAX_OPTIONS (1024 * 1024)
// Preprocessed input option data
typedef struct {
real S;
real X;
real MuByT;
real VBySqrtT;
} __TOptionData;
////////////////////////////////////////////////////////////////////////////////
// Overloaded shortcut payoff functions for different precision modes
////////////////////////////////////////////////////////////////////////////////
__device__ inline float endCallValue(float S, float X, float r, float MuByT,
float VBySqrtT) {
float callValue = S * __expf(MuByT + VBySqrtT * r) - X;
return (callValue > 0.0F) ? callValue : 0.0F;
}
__device__ inline double endCallValue(double S, double X, double r,
double MuByT, double VBySqrtT) {
double callValue = S * exp(MuByT + VBySqrtT * r) - X;
return (callValue > 0.0) ? callValue : 0.0;
}
#define THREAD_N 256
////////////////////////////////////////////////////////////////////////////////
// This kernel computes the integral over all paths using a single thread block
// per option. It is fastest when the number of thread blocks times the work per
// block is high enough to keep the GPU busy.
////////////////////////////////////////////////////////////////////////////////
static __global__ void MonteCarloOneBlockPerOption(
curandState *__restrict rngStates,
const __TOptionData *__restrict d_OptionData,
__TOptionValue *__restrict d_CallValue, int pathN, int optionN) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
const int SUM_N = THREAD_N;
__shared__ real s_SumCall[SUM_N];
__shared__ real s_Sum2Call[SUM_N];
// determine global thread id
int tid = threadIdx.x + blockIdx.x * blockDim.x;
// Copy random number state to local memory for efficiency
curandState localState = rngStates[tid];
for (int optionIndex = blockIdx.x; optionIndex < optionN;
optionIndex += gridDim.x) {
const real S = d_OptionData[optionIndex].S;
const real X = d_OptionData[optionIndex].X;
const real MuByT = d_OptionData[optionIndex].MuByT;
const real VBySqrtT = d_OptionData[optionIndex].VBySqrtT;
// Cycle through the entire samples array:
// derive end stock price for each path
// accumulate partial integrals into intermediate shared memory buffer
for (int iSum = threadIdx.x; iSum < SUM_N; iSum += blockDim.x) {
__TOptionValue sumCall = {0, 0};
#pragma unroll 8
for (int i = iSum; i < pathN; i += SUM_N) {
real r = curand_normal(&localState);
real callValue = endCallValue(S, X, r, MuByT, VBySqrtT);
sumCall.Expected += callValue;
sumCall.Confidence += callValue * callValue;
}
s_SumCall[iSum] = sumCall.Expected;
s_Sum2Call[iSum] = sumCall.Confidence;
}
// Reduce shared memory accumulators
// and write final result to global memory
cg::sync(cta);
sumReduce<real, SUM_N, THREAD_N>(s_SumCall, s_Sum2Call, cta, tile32,
&d_CallValue[optionIndex]);
}
}
static __global__ void rngSetupStates(curandState *rngState, int device_id) {
// determine global thread id
int tid = threadIdx.x + blockIdx.x * blockDim.x;
// Each threadblock gets different seed,
// Threads within a threadblock get different sequence numbers
curand_init(blockIdx.x + gridDim.x * device_id, threadIdx.x, 0,
&rngState[tid]);
}
////////////////////////////////////////////////////////////////////////////////
// Host-side interface to GPU Monte Carlo
////////////////////////////////////////////////////////////////////////////////
extern "C" void initMonteCarloGPU(TOptionPlan *plan) {
checkCudaErrors(cudaMalloc(&plan->d_OptionData,
sizeof(__TOptionData) * (plan->optionCount)));
checkCudaErrors(cudaMalloc(&plan->d_CallValue,
sizeof(__TOptionValue) * (plan->optionCount)));
checkCudaErrors(cudaMallocHost(&plan->h_OptionData,
sizeof(__TOptionData) * (plan->optionCount)));
// Allocate internal device memory
checkCudaErrors(cudaMallocHost(&plan->h_CallValue,
sizeof(__TOptionValue) * (plan->optionCount)));
// Allocate states for pseudo random number generators
checkCudaErrors(cudaMalloc((void **)&plan->rngStates,
plan->gridSize * THREAD_N * sizeof(curandState)));
checkCudaErrors(cudaMemset(plan->rngStates, 0,
plan->gridSize * THREAD_N * sizeof(curandState)));
// place each device pathN random numbers apart on the random number sequence
rngSetupStates<<<plan->gridSize, THREAD_N>>>(plan->rngStates, plan->device);
getLastCudaError("rngSetupStates kernel failed.\n");
}
// Compute statistics and deallocate internal device memory
extern "C" void closeMonteCarloGPU(TOptionPlan *plan) {
for (int i = 0; i < plan->optionCount; i++) {
const double RT = plan->optionData[i].R * plan->optionData[i].T;
const double sum = plan->h_CallValue[i].Expected;
const double sum2 = plan->h_CallValue[i].Confidence;
const double pathN = plan->pathN;
// Derive average from the total sum and discount by riskfree rate
plan->callValue[i].Expected = (float)(exp(-RT) * sum / pathN);
// Standard deviation
double stdDev = sqrt((pathN * sum2 - sum * sum) / (pathN * (pathN - 1)));
// Confidence width; in 95% of all cases theoretical value lies within these
// borders
plan->callValue[i].Confidence =
(float)(exp(-RT) * 1.96 * stdDev / sqrt(pathN));
}
checkCudaErrors(cudaFree(plan->rngStates));
checkCudaErrors(cudaFreeHost(plan->h_CallValue));
checkCudaErrors(cudaFreeHost(plan->h_OptionData));
checkCudaErrors(cudaFree(plan->d_CallValue));
checkCudaErrors(cudaFree(plan->d_OptionData));
}
// Main computations
extern "C" void MonteCarloGPU(TOptionPlan *plan, cudaStream_t stream) {
__TOptionValue *h_CallValue = plan->h_CallValue;
if (plan->optionCount <= 0 || plan->optionCount > MAX_OPTIONS) {
printf("MonteCarloGPU(): bad option count.\n");
return;
}
__TOptionData *h_OptionData = (__TOptionData *)plan->h_OptionData;
for (int i = 0; i < plan->optionCount; i++) {
const double T = plan->optionData[i].T;
const double R = plan->optionData[i].R;
const double V = plan->optionData[i].V;
const double MuByT = (R - 0.5 * V * V) * T;
const double VBySqrtT = V * sqrt(T);
h_OptionData[i].S = (real)plan->optionData[i].S;
h_OptionData[i].X = (real)plan->optionData[i].X;
h_OptionData[i].MuByT = (real)MuByT;
h_OptionData[i].VBySqrtT = (real)VBySqrtT;
}
checkCudaErrors(cudaMemcpyAsync(plan->d_OptionData, h_OptionData,
plan->optionCount * sizeof(__TOptionData),
cudaMemcpyHostToDevice, stream));
MonteCarloOneBlockPerOption<<<plan->gridSize, THREAD_N, 0, stream>>>(
plan->rngStates, (__TOptionData *)(plan->d_OptionData),
(__TOptionValue *)(plan->d_CallValue), plan->pathN, plan->optionCount);
getLastCudaError("MonteCarloOneBlockPerOption() execution failed\n");
checkCudaErrors(cudaMemcpyAsync(h_CallValue, plan->d_CallValue,
plan->optionCount * sizeof(__TOptionValue),
cudaMemcpyDeviceToHost, stream));
// cudaDeviceSynchronize();
}