forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinaryPartitionCG.cu
159 lines (138 loc) · 6.37 KB
/
binaryPartitionCG.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample illustrates basic usage of binary partition cooperative groups
* within the thread block tile when divergent path exists.
* 1.) Each thread loads a value from random array.
* 2.) then checks if it is odd or even.
* 3.) create binary partition group based on the above predicate
* 4.) we count the number of odd/even in the group based on size of the binary
groups
* 5.) write it global counter of odd.
* 6.) sum the values loaded by individual threads(using reduce) and write it to
global even & odd elements sum.
*
* **NOTE** :
* binary_partition results in splitting warp into divergent thread groups
* this is not good from performance perspective, but in cases where warp
* divergence is inevitable one can use binary_partition group.
*/
#include <stdio.h>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <helper_cuda.h>
namespace cg = cooperative_groups;
void initOddEvenArr(int *inputArr, unsigned int size) {
for (int i = 0; i < size; i++) {
inputArr[i] = rand() % 50;
}
}
/**
* CUDA kernel device code
*
* Creates cooperative groups and performs odd/even counting & summation.
*/
__global__ void oddEvenCountAndSumCG(int *inputArr, int *numOfOdds,
int *sumOfOddAndEvens, unsigned int size) {
cg::thread_block cta = cg::this_thread_block();
cg::grid_group grid = cg::this_grid();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
int elem = inputArr[i];
auto subTile = cg::binary_partition(tile32, elem & 1);
if (elem & 1) // Odd numbers group
{
int oddGroupSum = cg::reduce(subTile, elem, cg::plus<int>());
if (subTile.thread_rank() == 0) {
// Add number of odds present in this group of Odds.
atomicAdd(numOfOdds, subTile.size());
// Add local reduction of odds present in this group of Odds.
atomicAdd(&sumOfOddAndEvens[0], oddGroupSum);
}
} else // Even numbers group
{
int evenGroupSum = cg::reduce(subTile, elem, cg::plus<int>());
if (subTile.thread_rank() == 0) {
// Add local reduction of even present in this group of evens.
atomicAdd(&sumOfOddAndEvens[1], evenGroupSum);
}
}
// reconverge warp so for next loop iteration we ensure convergence of
// above diverged threads to perform coalesced loads of inputArr.
cg::sync(tile32);
}
}
/**
* Host main routine
*/
int main(int argc, const char **argv) {
int deviceId = findCudaDevice(argc, argv);
int *h_inputArr, *d_inputArr;
int *h_numOfOdds, *d_numOfOdds;
int *h_sumOfOddEvenElems, *d_sumOfOddEvenElems;
unsigned int arrSize = 1024 * 100;
checkCudaErrors(cudaMallocHost(&h_inputArr, sizeof(int) * arrSize));
checkCudaErrors(cudaMallocHost(&h_numOfOdds, sizeof(int)));
checkCudaErrors(cudaMallocHost(&h_sumOfOddEvenElems, sizeof(int) * 2));
initOddEvenArr(h_inputArr, arrSize);
cudaStream_t stream;
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaMalloc(&d_inputArr, sizeof(int) * arrSize));
checkCudaErrors(cudaMalloc(&d_numOfOdds, sizeof(int)));
checkCudaErrors(cudaMalloc(&d_sumOfOddEvenElems, sizeof(int) * 2));
checkCudaErrors(cudaMemcpyAsync(d_inputArr, h_inputArr, sizeof(int) * arrSize,
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemsetAsync(d_numOfOdds, 0, sizeof(int), stream));
checkCudaErrors(
cudaMemsetAsync(d_sumOfOddEvenElems, 0, 2 * sizeof(int), stream));
// Launch the kernel
int threadsPerBlock = 0;
int blocksPerGrid = 0;
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
&blocksPerGrid, &threadsPerBlock, oddEvenCountAndSumCG, 0, 0));
printf("\nLaunching %d blocks with %d threads...\n\n", blocksPerGrid,
threadsPerBlock);
oddEvenCountAndSumCG<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
d_inputArr, d_numOfOdds, d_sumOfOddEvenElems, arrSize);
checkCudaErrors(cudaMemcpyAsync(h_numOfOdds, d_numOfOdds, sizeof(int),
cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaMemcpyAsync(h_sumOfOddEvenElems, d_sumOfOddEvenElems,
2 * sizeof(int), cudaMemcpyDeviceToHost,
stream));
checkCudaErrors(cudaStreamSynchronize(stream));
printf("Array size = %d Num of Odds = %d Sum of Odds = %d Sum of Evens %d\n",
arrSize, h_numOfOdds[0], h_sumOfOddEvenElems[0],
h_sumOfOddEvenElems[1]);
printf("\n...Done.\n\n");
checkCudaErrors(cudaFreeHost(h_inputArr));
checkCudaErrors(cudaFreeHost(h_numOfOdds));
checkCudaErrors(cudaFreeHost(h_sumOfOddEvenElems));
checkCudaErrors(cudaFree(d_inputArr));
checkCudaErrors(cudaFree(d_numOfOdds));
checkCudaErrors(cudaFree(d_sumOfOddEvenElems));
return EXIT_SUCCESS;
}