forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbindlessTexture_kernel.cu
429 lines (331 loc) · 14 KB
/
bindlessTexture_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
This sample has two kernels, one doing the rendering every frame, and
another one used to generate the mip map levels at startup.
For rendering we use a "virtual" texturing approach, where one 2d texture
stores pointers to the actual textures used. This can be achieved by the
new cudaTextureObject introduced in CUDA 5.0 and requiring sm3+ hardware.
The mipmap generation kernel uses cudaSurfaceObject and cudaTextureObject
passed as kernel arguments to compute the higher mip map level based on
the lower.
*/
#ifndef _BINDLESSTEXTURE_KERNEL_CU_
#define _BINDLESSTEXTURE_KERNEL_CU_
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <vector>
#include <helper_cuda.h>
#include <helper_math.h>
#include "bindlessTexture.h"
// set this to just see the mipmap chain of first image
//#define SHOW_MIPMAPS
// local references to resources
Image atlasImage;
std::vector<Image> contentImages;
float highestLod = 1.0f;
#ifndef MAX
#define MAX(a, b) ((a > b) ? a : b)
#endif
//////////////////////////////////////////////////////////////////////////
__host__ __device__ __inline__ uint2 encodeTextureObject(
cudaTextureObject_t obj) {
return make_uint2((uint)(obj & 0xFFFFFFFF), (uint)(obj >> 32));
}
__host__ __device__ __inline__ cudaTextureObject_t decodeTextureObject(
uint2 obj) {
return (((cudaTextureObject_t)obj.x) | ((cudaTextureObject_t)obj.y) << 32);
}
__device__ __inline__ float4 to_float4(uchar4 vec) {
return make_float4(vec.x, vec.y, vec.z, vec.w);
}
__device__ __inline__ uchar4 to_uchar4(float4 vec) {
return make_uchar4((uchar)vec.x, (uchar)vec.y, (uchar)vec.z, (uchar)vec.w);
}
//////////////////////////////////////////////////////////////////////////
// Rendering
// the atlas texture stores the 64 bit cudaTextureObjects
// we use it for "virtual" texturing
__global__ void d_render(uchar4 *d_output, uint imageW, uint imageH, float lod,
cudaTextureObject_t atlasTexture) {
uint x = blockIdx.x * blockDim.x + threadIdx.x;
uint y = blockIdx.y * blockDim.y + threadIdx.y;
float u = x / (float)imageW;
float v = y / (float)imageH;
if ((x < imageW) && (y < imageH)) {
// read from 2D atlas texture and decode texture object
uint2 texCoded = tex2D<uint2>(atlasTexture, u, v);
cudaTextureObject_t tex = decodeTextureObject(texCoded);
// read from cuda texture object, use template to specify what data will be
// returned. tex2DLod allows us to pass the lod (mip map level) directly.
// There is other functions with CUDA 5, e.g. tex2DGrad, that allow you
// to pass derivatives to perform automatic mipmap/anisotropic filtering.
float4 color = tex2DLod<float4>(tex, u, 1 - v, lod);
// In our sample tex is always valid, but for something like your own
// sparse texturing you would need to make sure to handle the zero case.
// write output color
uint i = y * imageW + x;
d_output[i] = to_uchar4(color * 255.0);
}
}
extern "C" void renderAtlasImage(dim3 gridSize, dim3 blockSize,
uchar4 *d_output, uint imageW, uint imageH,
float lod) {
// psuedo animate lod
lod = fmodf(lod, highestLod * 2);
lod = highestLod - fabs(lod - highestLod);
#ifdef SHOW_MIPMAPS
lod = 0.0f;
#endif
d_render<<<gridSize, blockSize>>>(d_output, imageW, imageH, lod,
atlasImage.textureObject);
checkCudaErrors(cudaGetLastError());
}
//////////////////////////////////////////////////////////////////////////
// MipMap Generation
// A key benefit of using the new surface objects is that we don't need any
// global binding points anymore. We can directly pass them as function
// arguments.
__global__ void d_mipmap(cudaSurfaceObject_t mipOutput,
cudaTextureObject_t mipInput, uint imageW,
uint imageH) {
uint x = blockIdx.x * blockDim.x + threadIdx.x;
uint y = blockIdx.y * blockDim.y + threadIdx.y;
float px = 1.0 / float(imageW);
float py = 1.0 / float(imageH);
if ((x < imageW) && (y < imageH)) {
// take the average of 4 samples
// we are using the normalized access to make sure non-power-of-two textures
// behave well when downsized.
float4 color = (tex2D<float4>(mipInput, (x + 0) * px, (y + 0) * py)) +
(tex2D<float4>(mipInput, (x + 1) * px, (y + 0) * py)) +
(tex2D<float4>(mipInput, (x + 1) * px, (y + 1) * py)) +
(tex2D<float4>(mipInput, (x + 0) * px, (y + 1) * py));
color /= 4.0;
color *= 255.0;
color = fminf(color, make_float4(255.0));
surf2Dwrite(to_uchar4(color), mipOutput, x * sizeof(uchar4), y);
}
}
void generateMipMaps(cudaMipmappedArray_t mipmapArray, cudaExtent size) {
size_t width = size.width;
size_t height = size.height;
#ifdef SHOW_MIPMAPS
cudaArray_t levelFirst;
checkCudaErrors(cudaGetMipmappedArrayLevel(&levelFirst, mipmapArray, 0));
#endif
uint level = 0;
while (width != 1 || height != 1) {
width /= 2;
width = MAX((size_t)1, width);
height /= 2;
height = MAX((size_t)1, height);
cudaArray_t levelFrom;
checkCudaErrors(cudaGetMipmappedArrayLevel(&levelFrom, mipmapArray, level));
cudaArray_t levelTo;
checkCudaErrors(
cudaGetMipmappedArrayLevel(&levelTo, mipmapArray, level + 1));
cudaExtent levelToSize;
checkCudaErrors(cudaArrayGetInfo(NULL, &levelToSize, NULL, levelTo));
checkHost(levelToSize.width == width);
checkHost(levelToSize.height == height);
checkHost(levelToSize.depth == 0);
// generate texture object for reading
cudaTextureObject_t texInput;
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = levelFrom;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = 1;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.addressMode[2] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeNormalizedFloat;
checkCudaErrors(
cudaCreateTextureObject(&texInput, &texRes, &texDescr, NULL));
// generate surface object for writing
cudaSurfaceObject_t surfOutput;
cudaResourceDesc surfRes;
memset(&surfRes, 0, sizeof(cudaResourceDesc));
surfRes.resType = cudaResourceTypeArray;
surfRes.res.array.array = levelTo;
checkCudaErrors(cudaCreateSurfaceObject(&surfOutput, &surfRes));
// run mipmap kernel
dim3 blockSize(16, 16, 1);
dim3 gridSize(((uint)width + blockSize.x - 1) / blockSize.x,
((uint)height + blockSize.y - 1) / blockSize.y, 1);
d_mipmap<<<gridSize, blockSize>>>(surfOutput, texInput, (uint)width,
(uint)height);
checkCudaErrors(cudaDeviceSynchronize());
checkCudaErrors(cudaGetLastError());
checkCudaErrors(cudaDestroySurfaceObject(surfOutput));
checkCudaErrors(cudaDestroyTextureObject(texInput));
#ifdef SHOW_MIPMAPS
// we blit the current mipmap back into first level
cudaMemcpy3DParms copyParams = {0};
copyParams.dstArray = levelFirst;
copyParams.srcArray = levelTo;
copyParams.extent = make_cudaExtent(width, height, 1);
copyParams.kind = cudaMemcpyDeviceToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
#endif
level++;
}
}
uint getMipMapLevels(cudaExtent size) {
size_t sz = MAX(MAX(size.width, size.height), size.depth);
uint levels = 0;
while (sz) {
sz /= 2;
levels++;
}
return levels;
}
//////////////////////////////////////////////////////////////////////////
// Initalization
extern "C" void randomizeAtlas() {
uint2 *h_data = (uint2 *)atlasImage.h_data;
// assign random texture object handles to our atlas image tiles
for (size_t i = 0; i < atlasImage.size.width * atlasImage.size.height; i++) {
#ifdef SHOW_MIPMAPS
h_data[i] = encodeTextureObject(contentImages[0].textureObject);
#else
h_data[i] = encodeTextureObject(
contentImages[rand() % contentImages.size()].textureObject);
#endif
}
// copy data to atlas array
cudaMemcpy3DParms copyParams = {0};
copyParams.srcPtr = make_cudaPitchedPtr(
atlasImage.h_data, atlasImage.size.width * sizeof(uint2),
atlasImage.size.width, atlasImage.size.height);
copyParams.dstArray = atlasImage.dataArray;
copyParams.extent = atlasImage.size;
copyParams.extent.depth = 1;
copyParams.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
};
extern "C" void deinitAtlasAndImages() {
for (size_t i = 0; i < contentImages.size(); i++) {
Image &image = contentImages[i];
if (image.h_data) {
free(image.h_data);
}
if (image.textureObject) {
checkCudaErrors(cudaDestroyTextureObject(image.textureObject));
}
if (image.mipmapArray) {
checkCudaErrors(cudaFreeMipmappedArray(image.mipmapArray));
}
}
if (atlasImage.h_data) {
free(atlasImage.h_data);
}
if (atlasImage.textureObject) {
checkCudaErrors(cudaDestroyTextureObject(atlasImage.textureObject));
}
if (atlasImage.dataArray) {
checkCudaErrors(cudaFreeArray(atlasImage.dataArray));
}
}
extern "C" void initAtlasAndImages(const Image *images, size_t numImages,
cudaExtent atlasSize) {
// create individual textures
contentImages.resize(numImages);
for (size_t i = 0; i < numImages; i++) {
Image &image = contentImages[i];
image.size = images[i].size;
image.size.depth = 0;
image.type = cudaResourceTypeMipmappedArray;
// how many mipmaps we need
uint levels = getMipMapLevels(image.size);
highestLod = MAX(highestLod, (float)levels - 1);
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>();
checkCudaErrors(cudaMallocMipmappedArray(&image.mipmapArray, &desc,
image.size, levels));
// upload level 0
cudaArray_t level0;
checkCudaErrors(cudaGetMipmappedArrayLevel(&level0, image.mipmapArray, 0));
cudaMemcpy3DParms copyParams = {0};
copyParams.srcPtr =
make_cudaPitchedPtr(images[i].h_data, image.size.width * sizeof(uchar4),
image.size.width, image.size.height);
copyParams.dstArray = level0;
copyParams.extent = image.size;
copyParams.extent.depth = 1;
copyParams.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
// compute rest of mipmaps based on level 0
generateMipMaps(image.mipmapArray, image.size);
// generate bindless texture object
cudaResourceDesc resDescr;
memset(&resDescr, 0, sizeof(cudaResourceDesc));
resDescr.resType = cudaResourceTypeMipmappedArray;
resDescr.res.mipmap.mipmap = image.mipmapArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = 1;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.mipmapFilterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.addressMode[2] = cudaAddressModeClamp;
texDescr.maxMipmapLevelClamp = float(levels - 1);
texDescr.readMode = cudaReadModeNormalizedFloat;
checkCudaErrors(cudaCreateTextureObject(&image.textureObject, &resDescr,
&texDescr, NULL));
}
// create atlas array
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<uint2>();
checkCudaErrors(cudaMallocArray(&atlasImage.dataArray, &channelDesc,
atlasSize.width, atlasSize.height));
atlasImage.h_data =
malloc(atlasSize.width * atlasSize.height * sizeof(uint2));
atlasImage.type = cudaResourceTypeArray;
atlasImage.size = atlasSize;
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = atlasImage.dataArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = true;
texDescr.filterMode = cudaFilterModePoint;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&atlasImage.textureObject, &texRes,
&texDescr, NULL));
randomizeAtlas();
}
#endif // #ifndef _SIMPLETEXTURE3D_KERNEL_CU_