forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcannyEdgeDetectorNPP.cpp
230 lines (183 loc) · 7.66 KB
/
cannyEdgeDetectorNPP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#define WINDOWS_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#pragma warning(disable : 4819)
#endif
#include <Exceptions.h>
#include <ImageIO.h>
#include <ImagesCPU.h>
#include <ImagesNPP.h>
#include <string.h>
#include <fstream>
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <helper_cuda.h>
#include <helper_string.h>
inline int cudaDeviceInit(int argc, const char **argv) {
int deviceCount;
checkCudaErrors(cudaGetDeviceCount(&deviceCount));
if (deviceCount == 0) {
std::cerr << "CUDA error: no devices supporting CUDA." << std::endl;
exit(EXIT_FAILURE);
}
int dev = findCudaDevice(argc, argv);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
std::cerr << "cudaSetDevice GPU" << dev << " = " << deviceProp.name
<< std::endl;
checkCudaErrors(cudaSetDevice(dev));
return dev;
}
bool printfNPPinfo(int argc, char *argv[]) {
const NppLibraryVersion *libVer = nppGetLibVersion();
printf("NPP Library Version %d.%d.%d\n", libVer->major, libVer->minor,
libVer->build);
int driverVersion, runtimeVersion;
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version: %d.%d\n", driverVersion / 1000,
(driverVersion % 100) / 10);
printf(" CUDA Runtime Version: %d.%d\n", runtimeVersion / 1000,
(runtimeVersion % 100) / 10);
// Min spec is SM 1.0 devices
bool bVal = checkCudaCapabilities(1, 0);
return bVal;
}
int main(int argc, char *argv[]) {
printf("%s Starting...\n\n", argv[0]);
try {
std::string sFilename;
char *filePath;
cudaDeviceInit(argc, (const char **)argv);
if (printfNPPinfo(argc, argv) == false) {
exit(EXIT_SUCCESS);
}
if (checkCmdLineFlag(argc, (const char **)argv, "input")) {
getCmdLineArgumentString(argc, (const char **)argv, "input", &filePath);
} else {
filePath = sdkFindFilePath("Lena.pgm", argv[0]);
}
if (filePath) {
sFilename = filePath;
} else {
sFilename = "Lena.pgm";
}
// if we specify the filename at the command line, then we only test
// sFilename[0].
int file_errors = 0;
std::ifstream infile(sFilename.data(), std::ifstream::in);
if (infile.good()) {
std::cout << "cannyEdgeDetectionNPP opened: <" << sFilename.data()
<< "> successfully!" << std::endl;
file_errors = 0;
infile.close();
} else {
std::cout << "cannyEdgeDetectionNPP unable to open: <" << sFilename.data()
<< ">" << std::endl;
file_errors++;
infile.close();
}
if (file_errors > 0) {
exit(EXIT_FAILURE);
}
std::string sResultFilename = sFilename;
std::string::size_type dot = sResultFilename.rfind('.');
if (dot != std::string::npos) {
sResultFilename = sResultFilename.substr(0, dot);
}
sResultFilename += "_cannyEdgeDetection.pgm";
if (checkCmdLineFlag(argc, (const char **)argv, "output")) {
char *outputFilePath;
getCmdLineArgumentString(argc, (const char **)argv, "output",
&outputFilePath);
sResultFilename = outputFilePath;
}
// declare a host image object for an 8-bit grayscale image
npp::ImageCPU_8u_C1 oHostSrc;
// load gray-scale image from disk
npp::loadImage(sFilename, oHostSrc);
// declare a device image and copy construct from the host image,
// i.e. upload host to device
npp::ImageNPP_8u_C1 oDeviceSrc(oHostSrc);
NppiSize oSrcSize = {(int)oDeviceSrc.width(), (int)oDeviceSrc.height()};
NppiPoint oSrcOffset = {0, 0};
// create struct with ROI size
NppiSize oSizeROI = {(int)oDeviceSrc.width(), (int)oDeviceSrc.height()};
// allocate device image of appropriately reduced size
npp::ImageNPP_8u_C1 oDeviceDst(oSizeROI.width, oSizeROI.height);
int nBufferSize = 0;
Npp8u *pScratchBufferNPP = 0;
// get necessary scratch buffer size and allocate that much device memory
NPP_CHECK_NPP(nppiFilterCannyBorderGetBufferSize(oSizeROI, &nBufferSize));
cudaMalloc((void **)&pScratchBufferNPP, nBufferSize);
// now run the canny edge detection filter
// Using nppiNormL2 will produce larger magnitude values allowing for finer
// control of threshold values while nppiNormL1 will be slightly faster.
// Also, selecting the sobel gradient filter allows up to a 5x5 kernel size
// which can produce more precise results but is a bit slower. Commonly
// nppiNormL2 and sobel gradient filter size of 3x3 are used. Canny
// recommends that the high threshold value should be about 3 times the low
// threshold value. The threshold range will depend on the range of
// magnitude values that the sobel gradient filter generates for a
// particular image.
Npp16s nLowThreshold = 72;
Npp16s nHighThreshold = 256;
if ((nBufferSize > 0) && (pScratchBufferNPP != 0)) {
NPP_CHECK_NPP(nppiFilterCannyBorder_8u_C1R(
oDeviceSrc.data(), oDeviceSrc.pitch(), oSrcSize, oSrcOffset,
oDeviceDst.data(), oDeviceDst.pitch(), oSizeROI, NPP_FILTER_SOBEL,
NPP_MASK_SIZE_3_X_3, nLowThreshold, nHighThreshold, nppiNormL2,
NPP_BORDER_REPLICATE, pScratchBufferNPP));
}
// free scratch buffer memory
cudaFree(pScratchBufferNPP);
// declare a host image for the result
npp::ImageCPU_8u_C1 oHostDst(oDeviceDst.size());
// and copy the device result data into it
oDeviceDst.copyTo(oHostDst.data(), oHostDst.pitch());
saveImage(sResultFilename, oHostDst);
std::cout << "Saved image: " << sResultFilename << std::endl;
nppiFree(oDeviceSrc.data());
nppiFree(oDeviceDst.data());
exit(EXIT_SUCCESS);
} catch (npp::Exception &rException) {
std::cerr << "Program error! The following exception occurred: \n";
std::cerr << rException << std::endl;
std::cerr << "Aborting." << std::endl;
exit(EXIT_FAILURE);
} catch (...) {
std::cerr << "Program error! An unknow type of exception occurred. \n";
std::cerr << "Aborting." << std::endl;
exit(EXIT_FAILURE);
return -1;
}
return 0;
}