forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclock.cpp
134 lines (106 loc) · 4.65 KB
/
clock.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This example shows how to use the clock function to measure the performance
* of block of threads of a kernel accurately. Blocks are executed in parallel
* and out of order. Since there's no synchronization mechanism between blocks,
* we measure the clock once for each block. The clock samples are written to
* device memory.
*/
// System includes
#include <stdio.h>
#include <stdint.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <nvrtc_helper.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#define NUM_BLOCKS 64
#define NUM_THREADS 256
// It's interesting to change the number of blocks and the number of threads to
// understand how to keep the hardware busy.
//
// Here are some numbers I get on my G80:
// blocks - clocks
// 1 - 3096
// 8 - 3232
// 16 - 3364
// 32 - 4615
// 64 - 9981
//
// With less than 16 blocks some of the multiprocessors of the device are idle.
// With
// more than 16 you are using all the multiprocessors, but there's only one
// block per
// multiprocessor and that doesn't allow you to hide the latency of the memory.
// With
// more than 32 the speed scales linearly.
// Start the main CUDA Sample here
int main(int argc, char **argv) {
printf("CUDA Clock sample\n");
typedef long clock_t;
clock_t timer[NUM_BLOCKS * 2];
float input[NUM_THREADS * 2];
for (int i = 0; i < NUM_THREADS * 2; i++) {
input[i] = (float)i;
}
char *cubin, *kernel_file;
size_t cubinSize;
kernel_file = sdkFindFilePath("clock_kernel.cu", argv[0]);
compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0);
CUmodule module = loadCUBIN(cubin, argc, argv);
CUfunction kernel_addr;
checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "timedReduction"));
dim3 cudaBlockSize(NUM_THREADS, 1, 1);
dim3 cudaGridSize(NUM_BLOCKS, 1, 1);
CUdeviceptr dinput, doutput, dtimer;
checkCudaErrors(cuMemAlloc(&dinput, sizeof(float) * NUM_THREADS * 2));
checkCudaErrors(cuMemAlloc(&doutput, sizeof(float) * NUM_BLOCKS));
checkCudaErrors(cuMemAlloc(&dtimer, sizeof(clock_t) * NUM_BLOCKS * 2));
checkCudaErrors(cuMemcpyHtoD(dinput, input, sizeof(float) * NUM_THREADS * 2));
void *arr[] = {(void *)&dinput, (void *)&doutput, (void *)&dtimer};
checkCudaErrors(cuLaunchKernel(
kernel_addr, cudaGridSize.x, cudaGridSize.y,
cudaGridSize.z, /* grid dim */
cudaBlockSize.x, cudaBlockSize.y, cudaBlockSize.z, /* block dim */
sizeof(float) * 2 * NUM_THREADS, 0, /* shared mem, stream */
&arr[0], /* arguments */
0));
checkCudaErrors(cuCtxSynchronize());
checkCudaErrors(
cuMemcpyDtoH(timer, dtimer, sizeof(clock_t) * NUM_BLOCKS * 2));
checkCudaErrors(cuMemFree(dinput));
checkCudaErrors(cuMemFree(doutput));
checkCudaErrors(cuMemFree(dtimer));
long double avgElapsedClocks = 0;
for (int i = 0; i < NUM_BLOCKS; i++) {
avgElapsedClocks += (long double)(timer[i + NUM_BLOCKS] - timer[i]);
}
avgElapsedClocks = avgElapsedClocks / NUM_BLOCKS;
printf("Average clocks/block = %Lf\n", avgElapsedClocks);
return EXIT_SUCCESS;
}