forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolutionTexture.cu
162 lines (132 loc) · 6.14 KB
/
convolutionTexture.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <helper_cuda.h>
#include "convolutionTexture_common.h"
////////////////////////////////////////////////////////////////////////////////
// GPU-specific defines
////////////////////////////////////////////////////////////////////////////////
// Maps to a single instruction on G8x / G9x / G10x
#define IMAD(a, b, c) (__mul24((a), (b)) + (c))
// Use unrolled innermost convolution loop
#define UNROLL_INNER 1
// Round a / b to nearest higher integer value
inline int iDivUp(int a, int b) { return (a % b != 0) ? (a / b + 1) : (a / b); }
// Align a to nearest higher multiple of b
inline int iAlignUp(int a, int b) { return (a % b != 0) ? (a - a % b + b) : a; }
////////////////////////////////////////////////////////////////////////////////
// Convolution kernel and input array storage
////////////////////////////////////////////////////////////////////////////////
__constant__ float c_Kernel[KERNEL_LENGTH];
extern "C" void setConvolutionKernel(float *h_Kernel) {
cudaMemcpyToSymbol(c_Kernel, h_Kernel, KERNEL_LENGTH * sizeof(float));
}
////////////////////////////////////////////////////////////////////////////////
// Loop unrolling templates, needed for best performance
////////////////////////////////////////////////////////////////////////////////
template <int i>
__device__ float convolutionRow(float x, float y, cudaTextureObject_t texSrc) {
return tex2D<float>(texSrc, x + (float)(KERNEL_RADIUS - i), y) * c_Kernel[i] +
convolutionRow<i - 1>(x, y, texSrc);
}
template <>
__device__ float convolutionRow<-1>(float x, float y,
cudaTextureObject_t texSrc) {
return 0;
}
template <int i>
__device__ float convolutionColumn(float x, float y,
cudaTextureObject_t texSrc) {
return tex2D<float>(texSrc, x, y + (float)(KERNEL_RADIUS - i)) * c_Kernel[i] +
convolutionColumn<i - 1>(x, y, texSrc);
}
template <>
__device__ float convolutionColumn<-1>(float x, float y,
cudaTextureObject_t texSrc) {
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// Row convolution filter
////////////////////////////////////////////////////////////////////////////////
__global__ void convolutionRowsKernel(float *d_Dst, int imageW, int imageH,
cudaTextureObject_t texSrc) {
const int ix = IMAD(blockDim.x, blockIdx.x, threadIdx.x);
const int iy = IMAD(blockDim.y, blockIdx.y, threadIdx.y);
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if (ix >= imageW || iy >= imageH) {
return;
}
float sum = 0;
#if (UNROLL_INNER)
sum = convolutionRow<2 * KERNEL_RADIUS>(x, y, texSrc);
#else
for (int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++) {
sum += tex2D<float>(texSrc, x + (float)k, y) * c_Kernel[KERNEL_RADIUS - k];
}
#endif
d_Dst[IMAD(iy, imageW, ix)] = sum;
}
extern "C" void convolutionRowsGPU(float *d_Dst, cudaArray *a_Src, int imageW,
int imageH, cudaTextureObject_t texSrc) {
dim3 threads(16, 12);
dim3 blocks(iDivUp(imageW, threads.x), iDivUp(imageH, threads.y));
convolutionRowsKernel<<<blocks, threads>>>(d_Dst, imageW, imageH, texSrc);
getLastCudaError("convolutionRowsKernel() execution failed\n");
}
////////////////////////////////////////////////////////////////////////////////
// Column convolution filter
////////////////////////////////////////////////////////////////////////////////
__global__ void convolutionColumnsKernel(float *d_Dst, int imageW, int imageH,
cudaTextureObject_t texSrc) {
const int ix = IMAD(blockDim.x, blockIdx.x, threadIdx.x);
const int iy = IMAD(blockDim.y, blockIdx.y, threadIdx.y);
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if (ix >= imageW || iy >= imageH) {
return;
}
float sum = 0;
#if (UNROLL_INNER)
sum = convolutionColumn<2 * KERNEL_RADIUS>(x, y, texSrc);
#else
for (int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++) {
sum += tex2D<float>(texSrc, x, y + (float)k) * c_Kernel[KERNEL_RADIUS - k];
}
#endif
d_Dst[IMAD(iy, imageW, ix)] = sum;
}
extern "C" void convolutionColumnsGPU(float *d_Dst, cudaArray *a_Src,
int imageW, int imageH,
cudaTextureObject_t texSrc) {
dim3 threads(16, 12);
dim3 blocks(iDivUp(imageW, threads.x), iDivUp(imageH, threads.y));
convolutionColumnsKernel<<<blocks, threads>>>(d_Dst, imageW, imageH, texSrc);
getLastCudaError("convolutionColumnsKernel() execution failed\n");
}