forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastWalshTransform_kernel.cuh
185 lines (156 loc) · 5.79 KB
/
fastWalshTransform_kernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FWT_KERNEL_CUH
#define FWT_KERNEL_CUH
#ifndef fwt_kernel_cuh
#define fwt_kernel_cuh
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
///////////////////////////////////////////////////////////////////////////////
// Elementary(for vectors less than elementary size) in-shared memory
// combined radix-2 + radix-4 Fast Walsh Transform
///////////////////////////////////////////////////////////////////////////////
#define ELEMENTARY_LOG2SIZE 11
__global__ void fwtBatch1Kernel(float *d_Output, float *d_Input, int log2N) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
const int N = 1 << log2N;
const int base = blockIdx.x << log2N;
//(2 ** 11) * 4 bytes == 8KB -- maximum s_data[] size for G80
extern __shared__ float s_data[];
float *d_Src = d_Input + base;
float *d_Dst = d_Output + base;
for (int pos = threadIdx.x; pos < N; pos += blockDim.x) {
s_data[pos] = d_Src[pos];
}
// Main radix-4 stages
const int pos = threadIdx.x;
for (int stride = N >> 2; stride > 0; stride >>= 2) {
int lo = pos & (stride - 1);
int i0 = ((pos - lo) << 2) + lo;
int i1 = i0 + stride;
int i2 = i1 + stride;
int i3 = i2 + stride;
cg::sync(cta);
float D0 = s_data[i0];
float D1 = s_data[i1];
float D2 = s_data[i2];
float D3 = s_data[i3];
float T;
T = D0;
D0 = D0 + D2;
D2 = T - D2;
T = D1;
D1 = D1 + D3;
D3 = T - D3;
T = D0;
s_data[i0] = D0 + D1;
s_data[i1] = T - D1;
T = D2;
s_data[i2] = D2 + D3;
s_data[i3] = T - D3;
}
// Do single radix-2 stage for odd power of two
if (log2N & 1) {
cg::sync(cta);
for (int pos = threadIdx.x; pos < N / 2; pos += blockDim.x) {
int i0 = pos << 1;
int i1 = i0 + 1;
float D0 = s_data[i0];
float D1 = s_data[i1];
s_data[i0] = D0 + D1;
s_data[i1] = D0 - D1;
}
}
cg::sync(cta);
for (int pos = threadIdx.x; pos < N; pos += blockDim.x) {
d_Dst[pos] = s_data[pos];
}
}
////////////////////////////////////////////////////////////////////////////////
// Single in-global memory radix-4 Fast Walsh Transform pass
// (for strides exceeding elementary vector size)
////////////////////////////////////////////////////////////////////////////////
__global__ void fwtBatch2Kernel(float *d_Output, float *d_Input, int stride) {
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
const int N = blockDim.x * gridDim.x * 4;
float *d_Src = d_Input + blockIdx.y * N;
float *d_Dst = d_Output + blockIdx.y * N;
int lo = pos & (stride - 1);
int i0 = ((pos - lo) << 2) + lo;
int i1 = i0 + stride;
int i2 = i1 + stride;
int i3 = i2 + stride;
float D0 = d_Src[i0];
float D1 = d_Src[i1];
float D2 = d_Src[i2];
float D3 = d_Src[i3];
float T;
T = D0;
D0 = D0 + D2;
D2 = T - D2;
T = D1;
D1 = D1 + D3;
D3 = T - D3;
T = D0;
d_Dst[i0] = D0 + D1;
d_Dst[i1] = T - D1;
T = D2;
d_Dst[i2] = D2 + D3;
d_Dst[i3] = T - D3;
}
////////////////////////////////////////////////////////////////////////////////
// Put everything together: batched Fast Walsh Transform CPU front-end
////////////////////////////////////////////////////////////////////////////////
void fwtBatchGPU(float *d_Data, int M, int log2N) {
const int THREAD_N = 256;
int N = 1 << log2N;
dim3 grid((1 << log2N) / (4 * THREAD_N), M, 1);
for (; log2N > ELEMENTARY_LOG2SIZE; log2N -= 2, N >>= 2, M <<= 2) {
fwtBatch2Kernel<<<grid, THREAD_N>>>(d_Data, d_Data, N / 4);
getLastCudaError("fwtBatch2Kernel() execution failed\n");
}
fwtBatch1Kernel<<<M, N / 4, N * sizeof(float)>>>(d_Data, d_Data, log2N);
getLastCudaError("fwtBatch1Kernel() execution failed\n");
}
////////////////////////////////////////////////////////////////////////////////
// Modulate two arrays
////////////////////////////////////////////////////////////////////////////////
__global__ void modulateKernel(float *d_A, float *d_B, int N) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int numThreads = blockDim.x * gridDim.x;
float rcpN = 1.0f / (float)N;
for (int pos = tid; pos < N; pos += numThreads) {
d_A[pos] *= d_B[pos] * rcpN;
}
}
// Interface to modulateKernel()
void modulateGPU(float *d_A, float *d_B, int N) {
modulateKernel<<<128, 256>>>(d_A, d_B, N);
}
#endif
#endif