forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarchingCubes.cpp
976 lines (788 loc) · 29.4 KB
/
marchingCubes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Marching cubes
This sample extracts a geometric isosurface from a volume dataset using
the marching cubes algorithm. It uses the scan (prefix sum) function from
the Thrust library to perform stream compaction. Similar techniques can
be used for other problems that require a variable-sized output per
thread.
For more information on marching cubes see:
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
http://en.wikipedia.org/wiki/Marching_cubes
Volume data courtesy:
http://www9.informatik.uni-erlangen.de/External/vollib/
For more information on the Thrust library
http://code.google.com/p/thrust/
The algorithm consists of several stages:
1. Execute "classifyVoxel" kernel
This evaluates the volume at the corners of each voxel and computes the
number of vertices each voxel will generate.
It is executed using one thread per voxel.
It writes two arrays - voxelOccupied and voxelVertices to global memory.
voxelOccupied is a flag indicating if the voxel is non-empty.
2. Scan "voxelOccupied" array (using Thrust scan)
Read back the total number of occupied voxels from GPU to CPU.
This is the sum of the last value of the exclusive scan and the last
input value.
3. Execute "compactVoxels" kernel
This compacts the voxelOccupied array to get rid of empty voxels.
This allows us to run the complex "generateTriangles" kernel on only
the occupied voxels.
4. Scan voxelVertices array
This gives the start address for the vertex data for each voxel.
We read back the total number of vertices generated from GPU to CPU.
Note that by using a custom scan function we could combine the above two
scan operations above into a single operation.
5. Execute "generateTriangles" kernel
This runs only on the occupied voxels.
It looks up the field values again and generates the triangle data,
using the results of the scan to write the output to the correct addresses.
The marching cubes look-up tables are stored in 1D textures.
6. Render geometry
Using number of vertices from readback.
*/
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#define WINDOWS_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#endif
// includes
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <helper_gl.h>
#include <cuda_runtime.h>
#include <cuda_gl_interop.h>
#include <vector_types.h>
#include <vector_functions.h>
#include <helper_cuda.h> // includes cuda.h and cuda_runtime_api.h
#include <helper_functions.h>
#include "defines.h"
#if defined(__APPLE__) || defined(MACOSX)
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#include <GLUT/glut.h>
#else
#include <GL/freeglut.h>
#endif
extern "C" void launch_classifyVoxel(dim3 grid, dim3 threads, uint *voxelVerts,
uint *voxelOccupied, uchar *volume,
uint3 gridSize, uint3 gridSizeShift,
uint3 gridSizeMask, uint numVoxels,
float3 voxelSize, float isoValue);
extern "C" void launch_compactVoxels(dim3 grid, dim3 threads,
uint *compactedVoxelArray,
uint *voxelOccupied,
uint *voxelOccupiedScan, uint numVoxels);
extern "C" void launch_generateTriangles(
dim3 grid, dim3 threads, float4 *pos, float4 *norm,
uint *compactedVoxelArray, uint *numVertsScanned, uint3 gridSize,
uint3 gridSizeShift, uint3 gridSizeMask, float3 voxelSize, float isoValue,
uint activeVoxels, uint maxVerts);
extern "C" void launch_generateTriangles2(
dim3 grid, dim3 threads, float4 *pos, float4 *norm,
uint *compactedVoxelArray, uint *numVertsScanned, uchar *volume,
uint3 gridSize, uint3 gridSizeShift, uint3 gridSizeMask, float3 voxelSize,
float isoValue, uint activeVoxels, uint maxVerts);
extern "C" void allocateTextures(uint **d_edgeTable, uint **d_triTable,
uint **d_numVertsTable);
extern "C" void createVolumeTexture(uchar *d_volume, size_t buffSize);
extern "C" void destroyAllTextureObjects();
extern "C" void ThrustScanWrapper(unsigned int *output, unsigned int *input,
unsigned int numElements);
// constants
const unsigned int window_width = 512;
const unsigned int window_height = 512;
const char *volumeFilename = "Bucky.raw";
uint3 gridSizeLog2 = make_uint3(5, 5, 5);
uint3 gridSizeShift;
uint3 gridSize;
uint3 gridSizeMask;
float3 voxelSize;
uint numVoxels = 0;
uint maxVerts = 0;
uint activeVoxels = 0;
uint totalVerts = 0;
float isoValue = 0.2f;
float dIsoValue = 0.005f;
// device data
GLuint posVbo, normalVbo;
GLint gl_Shader;
struct cudaGraphicsResource *cuda_posvbo_resource,
*cuda_normalvbo_resource; // handles OpenGL-CUDA exchange
float4 *d_pos = 0, *d_normal = 0;
uchar *d_volume = 0;
uint *d_voxelVerts = 0;
uint *d_voxelVertsScan = 0;
uint *d_voxelOccupied = 0;
uint *d_voxelOccupiedScan = 0;
uint *d_compVoxelArray;
// tables
uint *d_numVertsTable = 0;
uint *d_edgeTable = 0;
uint *d_triTable = 0;
// mouse controls
int mouse_old_x, mouse_old_y;
int mouse_buttons = 0;
float3 rotate = make_float3(0.0, 0.0, 0.0);
float3 translate = make_float3(0.0, 0.0, -3.0);
// toggles
bool wireframe = false;
bool animate = true;
bool lighting = true;
bool render = true;
bool compute = true;
#define MAX_EPSILON_ERROR 5.0f
#define REFRESH_DELAY 10 // ms
// Define the files that are to be save and the reference images for validation
const char *sOriginal[] = {"march_cubes.ppm", NULL};
const char *sReference[] = {"ref_march_cubes.ppm", NULL};
StopWatchInterface *timer = 0;
// Auto-Verification Code
const int frameCheckNumber = 4;
int fpsCount = 0; // FPS count for averaging
int fpsLimit = 1; // FPS limit for sampling
int g_Index = 0;
unsigned int frameCount = 0;
bool g_bValidate = false;
int *pArgc = NULL;
char **pArgv = NULL;
// forward declarations
void runGraphicsTest(int argc, char **argv);
void runAutoTest(int argc, char **argv);
void initMC(int argc, char **argv);
void computeIsosurface();
void dumpFile(void *dData, int data_bytes, const char *file_name);
template <class T>
void dumpBuffer(T *d_buffer, int nelements, int size_element);
void cleanup();
bool initGL(int *argc, char **argv);
void createVBO(GLuint *vbo, unsigned int size);
void deleteVBO(GLuint *vbo, struct cudaGraphicsResource **cuda_resource);
void display();
void keyboard(unsigned char key, int x, int y);
void mouse(int button, int state, int x, int y);
void motion(int x, int y);
void idle();
void reshape(int w, int h);
void mainMenu(int i);
#define EPSILON 5.0f
#define THRESHOLD 0.30f
void animation() {
if (animate) {
isoValue += dIsoValue;
if (isoValue < 0.1f) {
isoValue = 0.1f;
dIsoValue *= -1.0f;
} else if (isoValue > 0.9f) {
isoValue = 0.9f;
dIsoValue *= -1.0f;
}
}
}
void timerEvent(int value) {
animation();
glutPostRedisplay();
glutTimerFunc(REFRESH_DELAY, timerEvent, 0);
}
void computeFPS() {
frameCount++;
fpsCount++;
if (fpsCount == fpsLimit) {
char fps[256];
float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
sprintf(fps, "CUDA Marching Cubes: %3.1f fps", ifps);
glutSetWindowTitle(fps);
fpsCount = 0;
fpsLimit = ftoi(MAX(1.f, ifps));
sdkResetTimer(&timer);
}
}
////////////////////////////////////////////////////////////////////////////////
// Load raw data from disk
////////////////////////////////////////////////////////////////////////////////
uchar *loadRawFile(char *filename, int size) {
FILE *fp = fopen(filename, "rb");
if (!fp) {
fprintf(stderr, "Error opening file '%s'\n", filename);
return 0;
}
uchar *data = (uchar *)malloc(size);
size_t read = fread(data, 1, size, fp);
fclose(fp);
printf("Read '%s', %d bytes\n", filename, (int)read);
return data;
}
void dumpFile(void *dData, int data_bytes, const char *file_name) {
void *hData = malloc(data_bytes);
checkCudaErrors(cudaMemcpy(hData, dData, data_bytes, cudaMemcpyDeviceToHost));
sdkDumpBin(hData, data_bytes, file_name);
free(hData);
}
template <class T>
void dumpBuffer(T *d_buffer, int nelements, int size_element) {
uint bytes = nelements * size_element;
T *h_buffer = (T *)malloc(bytes);
checkCudaErrors(
cudaMemcpy(h_buffer, d_buffer, bytes, cudaMemcpyDeviceToHost));
for (int i = 0; i < nelements; i++) {
printf("%d: %u\n", i, h_buffer[i]);
}
printf("\n");
free(h_buffer);
}
void runAutoTest(int argc, char **argv) {
findCudaDevice(argc, (const char **)argv);
// Initialize CUDA buffers for Marching Cubes
initMC(argc, argv);
computeIsosurface();
char *ref_file = NULL;
getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
enum DUMP_TYPE { DUMP_POS = 0, DUMP_NORMAL, DUMP_VOXEL };
int dump_option = getCmdLineArgumentInt(argc, (const char **)argv, "dump");
bool bTestResult = true;
switch (dump_option) {
case DUMP_POS:
dumpFile((void *)d_pos, sizeof(float4) * maxVerts,
"marchCube_posArray.bin");
bTestResult = sdkCompareBin2BinFloat(
"marchCube_posArray.bin", "posArray.bin",
maxVerts * sizeof(float) * 4, EPSILON, THRESHOLD, argv[0]);
break;
case DUMP_NORMAL:
dumpFile((void *)d_normal, sizeof(float4) * maxVerts,
"marchCube_normalArray.bin");
bTestResult = sdkCompareBin2BinFloat(
"marchCube_normalArray.bin", "normalArray.bin",
maxVerts * sizeof(float) * 4, EPSILON, THRESHOLD, argv[0]);
break;
case DUMP_VOXEL:
dumpFile((void *)d_compVoxelArray, sizeof(uint) * numVoxels,
"marchCube_compVoxelArray.bin");
bTestResult = sdkCompareBin2BinFloat(
"marchCube_compVoxelArray.bin", "compVoxelArray.bin",
numVoxels * sizeof(uint), EPSILON, THRESHOLD, argv[0]);
break;
default:
printf("Invalid validation flag!\n");
printf("-dump=0 <check position>\n");
printf("-dump=1 <check normal>\n");
printf("-dump=2 <check voxel>\n");
exit(EXIT_SUCCESS);
}
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
pArgc = &argc;
pArgv = argv;
#if defined(__linux__)
setenv("DISPLAY", ":0", 0);
#endif
printf("[%s] - Starting...\n", argv[0]);
if (checkCmdLineFlag(argc, (const char **)argv, "file") &&
checkCmdLineFlag(argc, (const char **)argv, "dump")) {
animate = false;
fpsLimit = frameCheckNumber;
g_bValidate = true;
runAutoTest(argc, argv);
} else {
runGraphicsTest(argc, argv);
}
exit(EXIT_SUCCESS);
}
////////////////////////////////////////////////////////////////////////////////
// initialize marching cubes
////////////////////////////////////////////////////////////////////////////////
void initMC(int argc, char **argv) {
// parse command line arguments
int n;
if (checkCmdLineFlag(argc, (const char **)argv, "grid")) {
n = getCmdLineArgumentInt(argc, (const char **)argv, "grid");
gridSizeLog2.x = gridSizeLog2.y = gridSizeLog2.z = n;
}
if (checkCmdLineFlag(argc, (const char **)argv, "gridx")) {
n = getCmdLineArgumentInt(argc, (const char **)argv, "gridx");
gridSizeLog2.x = n;
}
if (checkCmdLineFlag(argc, (const char **)argv, "gridx")) {
n = getCmdLineArgumentInt(argc, (const char **)argv, "gridx");
gridSizeLog2.y = n;
}
if (checkCmdLineFlag(argc, (const char **)argv, "gridz")) {
n = getCmdLineArgumentInt(argc, (const char **)argv, "gridz");
gridSizeLog2.z = n;
}
char *filename;
if (getCmdLineArgumentString(argc, (const char **)argv, "file", &filename)) {
volumeFilename = filename;
}
gridSize =
make_uint3(1 << gridSizeLog2.x, 1 << gridSizeLog2.y, 1 << gridSizeLog2.z);
gridSizeMask = make_uint3(gridSize.x - 1, gridSize.y - 1, gridSize.z - 1);
gridSizeShift =
make_uint3(0, gridSizeLog2.x, gridSizeLog2.x + gridSizeLog2.y);
numVoxels = gridSize.x * gridSize.y * gridSize.z;
voxelSize =
make_float3(2.0f / gridSize.x, 2.0f / gridSize.y, 2.0f / gridSize.z);
maxVerts = gridSize.x * gridSize.y * 100;
printf("grid: %d x %d x %d = %d voxels\n", gridSize.x, gridSize.y, gridSize.z,
numVoxels);
printf("max verts = %d\n", maxVerts);
#if SAMPLE_VOLUME
// load volume data
char *path = sdkFindFilePath(volumeFilename, argv[0]);
if (path == NULL) {
fprintf(stderr, "Error finding file '%s'\n", volumeFilename);
exit(EXIT_FAILURE);
}
int size = gridSize.x * gridSize.y * gridSize.z * sizeof(uchar);
uchar *volume = loadRawFile(path, size);
checkCudaErrors(cudaMalloc((void **)&d_volume, size));
checkCudaErrors(cudaMemcpy(d_volume, volume, size, cudaMemcpyHostToDevice));
free(volume);
createVolumeTexture(d_volume, size);
#endif
if (g_bValidate) {
cudaMalloc((void **)&(d_pos), maxVerts * sizeof(float) * 4);
cudaMalloc((void **)&(d_normal), maxVerts * sizeof(float) * 4);
} else {
// create VBOs
createVBO(&posVbo, maxVerts * sizeof(float) * 4);
// DEPRECATED: checkCudaErrors( cudaGLRegisterBufferObject(posVbo) );
checkCudaErrors(cudaGraphicsGLRegisterBuffer(
&cuda_posvbo_resource, posVbo, cudaGraphicsMapFlagsWriteDiscard));
createVBO(&normalVbo, maxVerts * sizeof(float) * 4);
// DEPRECATED: checkCudaErrors(cudaGLRegisterBufferObject(normalVbo));
checkCudaErrors(cudaGraphicsGLRegisterBuffer(
&cuda_normalvbo_resource, normalVbo, cudaGraphicsMapFlagsWriteDiscard));
}
// allocate textures
allocateTextures(&d_edgeTable, &d_triTable, &d_numVertsTable);
// allocate device memory
unsigned int memSize = sizeof(uint) * numVoxels;
checkCudaErrors(cudaMalloc((void **)&d_voxelVerts, memSize));
checkCudaErrors(cudaMalloc((void **)&d_voxelVertsScan, memSize));
checkCudaErrors(cudaMalloc((void **)&d_voxelOccupied, memSize));
checkCudaErrors(cudaMalloc((void **)&d_voxelOccupiedScan, memSize));
checkCudaErrors(cudaMalloc((void **)&d_compVoxelArray, memSize));
}
void cleanup() {
if (g_bValidate) {
cudaFree(d_pos);
cudaFree(d_normal);
} else {
sdkDeleteTimer(&timer);
deleteVBO(&posVbo, &cuda_posvbo_resource);
deleteVBO(&normalVbo, &cuda_normalvbo_resource);
}
destroyAllTextureObjects();
checkCudaErrors(cudaFree(d_edgeTable));
checkCudaErrors(cudaFree(d_triTable));
checkCudaErrors(cudaFree(d_numVertsTable));
checkCudaErrors(cudaFree(d_voxelVerts));
checkCudaErrors(cudaFree(d_voxelVertsScan));
checkCudaErrors(cudaFree(d_voxelOccupied));
checkCudaErrors(cudaFree(d_voxelOccupiedScan));
checkCudaErrors(cudaFree(d_compVoxelArray));
if (d_volume) {
checkCudaErrors(cudaFree(d_volume));
}
}
void initMenus() {
glutCreateMenu(mainMenu);
glutAddMenuEntry("Toggle animation [ ]", ' ');
glutAddMenuEntry("Increment isovalue [+]", '+');
glutAddMenuEntry("Decrement isovalue [-]", '-');
glutAddMenuEntry("Toggle computation [c]", 'c');
glutAddMenuEntry("Toggle rendering [r]", 'r');
glutAddMenuEntry("Toggle lighting [l]", 'l');
glutAddMenuEntry("Toggle wireframe [w]", 'w');
glutAddMenuEntry("Quit (esc)", '\033');
glutAttachMenu(GLUT_RIGHT_BUTTON);
}
void runGraphicsTest(int argc, char **argv) {
printf("MarchingCubes\n");
if (checkCmdLineFlag(argc, (const char **)argv, "device")) {
printf("[%s]\n", argv[0]);
printf(" Does not explicitly support -device=n in OpenGL mode\n");
printf(" To use -device=n, the sample must be running w/o OpenGL\n\n");
printf(" > %s -device=n -file=<reference> -dump=<0/1/2>\n", argv[0]);
exit(EXIT_SUCCESS);
}
// First initialize OpenGL context, so we can properly set the GL for CUDA.
// This is necessary in order to achieve optimal performance with OpenGL/CUDA
// interop.
if (false == initGL(&argc, argv)) {
return;
}
findCudaDevice(argc, (const char **)argv);
// register callbacks
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse);
glutMotionFunc(motion);
glutReshapeFunc(reshape);
glutTimerFunc(REFRESH_DELAY, timerEvent, 0);
initMenus();
// Initialize CUDA buffers for Marching Cubes
initMC(argc, argv);
sdkCreateTimer(&timer);
// start rendering mainloop
glutMainLoop();
}
#define DEBUG_BUFFERS 0
////////////////////////////////////////////////////////////////////////////////
//! Run the Cuda part of the computation
////////////////////////////////////////////////////////////////////////////////
void computeIsosurface() {
int threads = 128;
dim3 grid(numVoxels / threads, 1, 1);
// get around maximum grid size of 65535 in each dimension
if (grid.x > 65535) {
grid.y = grid.x / 32768;
grid.x = 32768;
}
// calculate number of vertices need per voxel
launch_classifyVoxel(grid, threads, d_voxelVerts, d_voxelOccupied, d_volume,
gridSize, gridSizeShift, gridSizeMask, numVoxels,
voxelSize, isoValue);
#if DEBUG_BUFFERS
printf("voxelVerts:\n");
dumpBuffer(d_voxelVerts, numVoxels, sizeof(uint));
#endif
#if SKIP_EMPTY_VOXELS
// scan voxel occupied array
ThrustScanWrapper(d_voxelOccupiedScan, d_voxelOccupied, numVoxels);
#if DEBUG_BUFFERS
printf("voxelOccupiedScan:\n");
dumpBuffer(d_voxelOccupiedScan, numVoxels, sizeof(uint));
#endif
// read back values to calculate total number of non-empty voxels
// since we are using an exclusive scan, the total is the last value of
// the scan result plus the last value in the input array
{
uint lastElement, lastScanElement;
checkCudaErrors(cudaMemcpy((void *)&lastElement,
(void *)(d_voxelOccupied + numVoxels - 1),
sizeof(uint), cudaMemcpyDeviceToHost));
checkCudaErrors(cudaMemcpy((void *)&lastScanElement,
(void *)(d_voxelOccupiedScan + numVoxels - 1),
sizeof(uint), cudaMemcpyDeviceToHost));
activeVoxels = lastElement + lastScanElement;
}
if (activeVoxels == 0) {
// return if there are no full voxels
totalVerts = 0;
return;
}
// compact voxel index array
launch_compactVoxels(grid, threads, d_compVoxelArray, d_voxelOccupied,
d_voxelOccupiedScan, numVoxels);
getLastCudaError("compactVoxels failed");
#endif // SKIP_EMPTY_VOXELS
// scan voxel vertex count array
ThrustScanWrapper(d_voxelVertsScan, d_voxelVerts, numVoxels);
#if DEBUG_BUFFERS
printf("voxelVertsScan:\n");
dumpBuffer(d_voxelVertsScan, numVoxels, sizeof(uint));
#endif
// readback total number of vertices
{
uint lastElement, lastScanElement;
checkCudaErrors(cudaMemcpy((void *)&lastElement,
(void *)(d_voxelVerts + numVoxels - 1),
sizeof(uint), cudaMemcpyDeviceToHost));
checkCudaErrors(cudaMemcpy((void *)&lastScanElement,
(void *)(d_voxelVertsScan + numVoxels - 1),
sizeof(uint), cudaMemcpyDeviceToHost));
totalVerts = lastElement + lastScanElement;
}
// generate triangles, writing to vertex buffers
if (!g_bValidate) {
size_t num_bytes;
// DEPRECATED: checkCudaErrors(cudaGLMapBufferObject((void**)&d_pos,
// posVbo));
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_posvbo_resource, 0));
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
(void **)&d_pos, &num_bytes, cuda_posvbo_resource));
// DEPRECATED: checkCudaErrors(cudaGLMapBufferObject((void**)&d_normal,
// normalVbo));
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_normalvbo_resource, 0));
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
(void **)&d_normal, &num_bytes, cuda_normalvbo_resource));
}
#if SKIP_EMPTY_VOXELS
dim3 grid2((int)ceil(activeVoxels / (float)NTHREADS), 1, 1);
#else
dim3 grid2((int)ceil(numVoxels / (float)NTHREADS), 1, 1);
#endif
while (grid2.x > 65535) {
grid2.x /= 2;
grid2.y *= 2;
}
#if SAMPLE_VOLUME
launch_generateTriangles2(grid2, NTHREADS, d_pos, d_normal, d_compVoxelArray,
d_voxelVertsScan, d_volume, gridSize, gridSizeShift,
gridSizeMask, voxelSize, isoValue, activeVoxels,
maxVerts);
#else
launch_generateTriangles(grid2, NTHREADS, d_pos, d_normal, d_compVoxelArray,
d_voxelVertsScan, gridSize, gridSizeShift,
gridSizeMask, voxelSize, isoValue, activeVoxels,
maxVerts);
#endif
if (!g_bValidate) {
// DEPRECATED: checkCudaErrors(cudaGLUnmapBufferObject(normalVbo));
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_normalvbo_resource, 0));
// DEPRECATED: checkCudaErrors(cudaGLUnmapBufferObject(posVbo));
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_posvbo_resource, 0));
}
}
// shader for displaying floating-point texture
static const char *shader_code =
"!!ARBfp1.0\n"
"TEX result.color, fragment.texcoord, texture[0], 2D; \n"
"END";
GLuint compileASMShader(GLenum program_type, const char *code) {
GLuint program_id;
glGenProgramsARB(1, &program_id);
glBindProgramARB(program_type, program_id);
glProgramStringARB(program_type, GL_PROGRAM_FORMAT_ASCII_ARB,
(GLsizei)strlen(code), (GLubyte *)code);
GLint error_pos;
glGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &error_pos);
if (error_pos != -1) {
const GLubyte *error_string;
error_string = glGetString(GL_PROGRAM_ERROR_STRING_ARB);
fprintf(stderr, "Program error at position: %d\n%s\n", (int)error_pos,
error_string);
return 0;
}
return program_id;
}
////////////////////////////////////////////////////////////////////////////////
//! Initialize OpenGL
////////////////////////////////////////////////////////////////////////////////
bool initGL(int *argc, char **argv) {
// Create GL context
glutInit(argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(window_width, window_height);
glutCreateWindow("CUDA Marching Cubes");
if (!isGLVersionSupported(2, 0)) {
fprintf(stderr, "ERROR: Support for necessary OpenGL extensions missing.");
fflush(stderr);
return false;
}
// default initialization
glClearColor(0.1f, 0.2f, 0.3f, 1.0f);
glEnable(GL_DEPTH_TEST);
// good old-fashioned fixed function lighting
float black[] = {0.0f, 0.0f, 0.0f, 1.0f};
float white[] = {1.0f, 1.0f, 1.0f, 1.0f};
float ambient[] = {0.1f, 0.1f, 0.1f, 1.0f};
float diffuse[] = {0.9f, 0.9f, 0.9f, 1.0f};
float lightPos[] = {0.0f, 0.0f, 1.0f, 0.0f};
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, black);
glLightfv(GL_LIGHT0, GL_AMBIENT, white);
glLightfv(GL_LIGHT0, GL_DIFFUSE, white);
glLightfv(GL_LIGHT0, GL_SPECULAR, white);
glLightfv(GL_LIGHT0, GL_POSITION, lightPos);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, black);
glEnable(GL_LIGHT0);
glEnable(GL_NORMALIZE);
// load shader program
gl_Shader = compileASMShader(GL_FRAGMENT_PROGRAM_ARB, shader_code);
glutReportErrors();
return true;
}
////////////////////////////////////////////////////////////////////////////////
//! Create VBO
////////////////////////////////////////////////////////////////////////////////
void createVBO(GLuint *vbo, unsigned int size) {
// create buffer object
glGenBuffers(1, vbo);
glBindBuffer(GL_ARRAY_BUFFER, *vbo);
// initialize buffer object
glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glutReportErrors();
}
////////////////////////////////////////////////////////////////////////////////
//! Delete VBO
////////////////////////////////////////////////////////////////////////////////
void deleteVBO(GLuint *vbo, struct cudaGraphicsResource **cuda_resource) {
glBindBuffer(1, *vbo);
glDeleteBuffers(1, vbo);
// DEPRECATED: checkCudaErrors(cudaGLUnregisterBufferObject(*vbo));
cudaGraphicsUnregisterResource(*cuda_resource);
*vbo = 0;
}
////////////////////////////////////////////////////////////////////////////////
// Render isosurface geometry from the vertex buffers
////////////////////////////////////////////////////////////////////////////////
void renderIsosurface() {
glBindBuffer(GL_ARRAY_BUFFER, posVbo);
glVertexPointer(4, GL_FLOAT, 0, 0);
glEnableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, normalVbo);
glNormalPointer(GL_FLOAT, sizeof(float) * 4, 0);
glEnableClientState(GL_NORMAL_ARRAY);
glColor3f(1.0, 0.0, 0.0);
glDrawArrays(GL_TRIANGLES, 0, totalVerts);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
////////////////////////////////////////////////////////////////////////////////
//! Display callback
////////////////////////////////////////////////////////////////////////////////
void display() {
sdkStartTimer(&timer);
// run CUDA kernel to generate geometry
if (compute) {
computeIsosurface();
}
// Common display code path
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// set view matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(translate.x, translate.y, translate.z);
glRotatef(rotate.x, 1.0, 0.0, 0.0);
glRotatef(rotate.y, 0.0, 1.0, 0.0);
glPolygonMode(GL_FRONT_AND_BACK, wireframe ? GL_LINE : GL_FILL);
if (lighting) {
glEnable(GL_LIGHTING);
}
// render
if (render) {
glPushMatrix();
glRotatef(180.0, 0.0, 1.0, 0.0);
glRotatef(90.0, 1.0, 0.0, 0.0);
renderIsosurface();
glPopMatrix();
}
glDisable(GL_LIGHTING);
}
glutSwapBuffers();
glutReportErrors();
sdkStopTimer(&timer);
computeFPS();
}
////////////////////////////////////////////////////////////////////////////////
//! Keyboard events handler
////////////////////////////////////////////////////////////////////////////////
void keyboard(unsigned char key, int /*x*/, int /*y*/) {
switch (key) {
case (27):
cleanup();
exit(EXIT_SUCCESS);
case '=':
isoValue += 0.01f;
break;
case '-':
isoValue -= 0.01f;
break;
case '+':
isoValue += 0.1f;
break;
case '_':
isoValue -= 0.1f;
break;
case 'w':
wireframe = !wireframe;
break;
case ' ':
animate = !animate;
break;
case 'l':
lighting = !lighting;
break;
case 'r':
render = !render;
break;
case 'c':
compute = !compute;
break;
}
printf("isoValue = %f\n", isoValue);
printf("voxels = %d\n", activeVoxels);
printf("verts = %d\n", totalVerts);
printf("occupancy: %d / %d = %.2f%%\n", activeVoxels, numVoxels,
activeVoxels * 100.0f / (float)numVoxels);
if (!compute) {
computeIsosurface();
}
}
////////////////////////////////////////////////////////////////////////////////
//! Mouse event handlers
////////////////////////////////////////////////////////////////////////////////
void mouse(int button, int state, int x, int y) {
if (state == GLUT_DOWN) {
mouse_buttons |= 1 << button;
} else if (state == GLUT_UP) {
mouse_buttons = 0;
}
mouse_old_x = x;
mouse_old_y = y;
}
void motion(int x, int y) {
float dx = (float)(x - mouse_old_x);
float dy = (float)(y - mouse_old_y);
if (mouse_buttons == 1) {
rotate.x += dy * 0.2f;
rotate.y += dx * 0.2f;
} else if (mouse_buttons == 2) {
translate.x += dx * 0.01f;
translate.y -= dy * 0.01f;
} else if (mouse_buttons == 3) {
translate.z += dy * 0.01f;
}
mouse_old_x = x;
mouse_old_y = y;
glutPostRedisplay();
}
void idle() {
animation();
glutPostRedisplay();
}
void reshape(int w, int h) {
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60.0, (float)w / (float)h, 0.1, 10.0);
glMatrixMode(GL_MODELVIEW);
glViewport(0, 0, w, h);
}
void mainMenu(int i) { keyboard((unsigned char)i, 0, 0); }