forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrixMulCUBLAS.cpp
365 lines (295 loc) · 12.6 KB
/
matrixMulCUBLAS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Matrix multiplication: C = A * B.
* Host code.
*
* This sample implements matrix multiplication as described in Chapter 3
* of the programming guide and uses the CUBLAS library to demonstrate
* the best performance.
* SOME PRECAUTIONS:
* IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B,
* WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)!
* The reason is explained as follows:
* CUBLAS library uses column-major storage, but C/C++ use row-major storage.
* When passing the matrix pointer to CUBLAS, the memory layout alters from
* row-major to column-major, which is equivalent to an implicit transpose.
* In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication
* C = A * B, we can't use the input order like cublasSgemm(A, B) because of
* implicit transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T).
* If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not
* multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C
* is a column-based cublas matrix, which means C(T) in C/C++, we need extra
* transpose code to convert it to a row-based C/C++ matrix.
* To solve the problem, let's consider our desired result C, a row-major matrix.
* In cublas format, it is C(T) actually (because of the implicit transpose).
* C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T)
* happen to be C/C++ matrice B and A (still because of the implicit transpose)!
* We don't need extra transpose code, we only need alter the input order!
*
* CUBLAS provides high-performance matrix multiplication.
* See also:
* V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
* in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08),
* Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
*/
// Utilities and system includes
#include <assert.h>
#include <helper_string.h> // helper for shared functions common to CUDA Samples
// CUDA runtime
#include <cuda_runtime.h>
#include <cublas_v2.h>
// CUDA and CUBLAS functions
#include <helper_functions.h>
#include <helper_cuda.h>
#ifndef min
#define min(a, b) ((a < b) ? a : b)
#endif
#ifndef max
#define max(a, b) ((a > b) ? a : b)
#endif
// Optional Command-line multiplier for matrix sizes
typedef struct _matrixSize {
unsigned int uiWA, uiHA, uiWB, uiHB, uiWC, uiHC;
} sMatrixSize;
////////////////////////////////////////////////////////////////////////////////
//! Compute reference data set matrix multiply on CPU
//! C = A * B
//! @param C reference data, computed but preallocated
//! @param A matrix A as provided to device
//! @param B matrix B as provided to device
//! @param hA height of matrix A
//! @param wB width of matrix B
////////////////////////////////////////////////////////////////////////////////
void matrixMulCPU(float *C, const float *A, const float *B, unsigned int hA,
unsigned int wA, unsigned int wB) {
for (unsigned int i = 0; i < hA; ++i)
for (unsigned int j = 0; j < wB; ++j) {
double sum = 0;
for (unsigned int k = 0; k < wA; ++k) {
double a = A[i * wA + k];
double b = B[k * wB + j];
sum += a * b;
}
C[i * wB + j] = (float)sum;
}
}
// Allocates a matrix with random float entries.
void randomInit(float *data, int size) {
for (int i = 0; i < size; ++i) data[i] = rand() / (float)RAND_MAX;
}
void printDiff(float *data1, float *data2, int width, int height,
int iListLength, float fListTol) {
printf("Listing first %d Differences > %.6f...\n", iListLength, fListTol);
int i, j, k;
int error_count = 0;
for (j = 0; j < height; j++) {
if (error_count < iListLength) {
printf("\n Row %d:\n", j);
}
for (i = 0; i < width; i++) {
k = j * width + i;
float fDiff = fabs(data1[k] - data2[k]);
if (fDiff > fListTol) {
if (error_count < iListLength) {
printf(" Loc(%d,%d)\tCPU=%.5f\tGPU=%.5f\tDiff=%.6f\n", i, j,
data1[k], data2[k], fDiff);
}
error_count++;
}
}
}
printf(" \n Total Errors = %d\n", error_count);
}
void initializeCUDA(int argc, char **argv, int &devID, int &iSizeMultiple,
sMatrixSize &matrix_size) {
// By default, we use device 0, otherwise we override the device ID based on
// what is provided at the command line
cudaError_t error;
devID = 0;
devID = findCudaDevice(argc, (const char **)argv);
if (checkCmdLineFlag(argc, (const char **)argv, "sizemult")) {
iSizeMultiple =
getCmdLineArgumentInt(argc, (const char **)argv, "sizemult");
}
iSizeMultiple = min(iSizeMultiple, 10);
iSizeMultiple = max(iSizeMultiple, 1);
cudaDeviceProp deviceProp;
error = cudaGetDeviceProperties(&deviceProp, devID);
if (error != cudaSuccess) {
printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error,
__LINE__);
exit(EXIT_FAILURE);
}
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID,
deviceProp.name, deviceProp.major, deviceProp.minor);
int block_size = 32;
matrix_size.uiWA = 3 * block_size * iSizeMultiple;
matrix_size.uiHA = 4 * block_size * iSizeMultiple;
matrix_size.uiWB = 2 * block_size * iSizeMultiple;
matrix_size.uiHB = 3 * block_size * iSizeMultiple;
matrix_size.uiWC = 2 * block_size * iSizeMultiple;
matrix_size.uiHC = 4 * block_size * iSizeMultiple;
printf("MatrixA(%u,%u), MatrixB(%u,%u), MatrixC(%u,%u)\n", matrix_size.uiHA,
matrix_size.uiWA, matrix_size.uiHB, matrix_size.uiWB, matrix_size.uiHC,
matrix_size.uiWC);
if (matrix_size.uiWA != matrix_size.uiHB ||
matrix_size.uiHA != matrix_size.uiHC ||
matrix_size.uiWB != matrix_size.uiWC) {
printf("ERROR: Matrix sizes do not match!\n");
exit(-1);
}
}
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test matrix multiply using CUBLAS
////////////////////////////////////////////////////////////////////////////////
int matrixMultiply(int argc, char **argv, int devID, sMatrixSize &matrix_size) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
int block_size = 32;
// set seed for rand()
srand(2006);
// allocate host memory for matrices A and B
unsigned int size_A = matrix_size.uiWA * matrix_size.uiHA;
unsigned int mem_size_A = sizeof(float) * size_A;
float *h_A = (float *)malloc(mem_size_A);
unsigned int size_B = matrix_size.uiWB * matrix_size.uiHB;
unsigned int mem_size_B = sizeof(float) * size_B;
float *h_B = (float *)malloc(mem_size_B);
// set seed for rand()
srand(2006);
// initialize host memory
randomInit(h_A, size_A);
randomInit(h_B, size_B);
// allocate device memory
float *d_A, *d_B, *d_C;
unsigned int size_C = matrix_size.uiWC * matrix_size.uiHC;
unsigned int mem_size_C = sizeof(float) * size_C;
// allocate host memory for the result
float *h_C = (float *)malloc(mem_size_C);
float *h_CUBLAS = (float *)malloc(mem_size_C);
checkCudaErrors(cudaMalloc((void **)&d_A, mem_size_A));
checkCudaErrors(cudaMalloc((void **)&d_B, mem_size_B));
checkCudaErrors(cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMalloc((void **)&d_C, mem_size_C));
// setup execution parameters
dim3 threads(block_size, block_size);
dim3 grid(matrix_size.uiWC / threads.x, matrix_size.uiHC / threads.y);
// create and start timer
printf("Computing result using CUBLAS...");
// execute the kernel
int nIter = 30;
// CUBLAS version 2.0
{
const float alpha = 1.0f;
const float beta = 0.0f;
cublasHandle_t handle;
cudaEvent_t start, stop;
checkCudaErrors(cublasCreate(&handle));
// Perform warmup operation with cublas
checkCudaErrors(cublasSgemm(
handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA,
matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A, matrix_size.uiWA,
&beta, d_C, matrix_size.uiWB));
// Allocate CUDA events that we'll use for timing
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
// Record the start event
checkCudaErrors(cudaEventRecord(start, NULL));
for (int j = 0; j < nIter; j++) {
// note cublas is column primary!
// need to transpose the order
checkCudaErrors(cublasSgemm(
handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA,
matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A,
matrix_size.uiWA, &beta, d_C, matrix_size.uiWB));
}
printf("done.\n");
// Record the stop event
checkCudaErrors(cudaEventRecord(stop, NULL));
// Wait for the stop event to complete
checkCudaErrors(cudaEventSynchronize(stop));
float msecTotal = 0.0f;
checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, stop));
// Compute and print the performance
float msecPerMatrixMul = msecTotal / nIter;
double flopsPerMatrixMul = 2.0 * (double)matrix_size.uiHC *
(double)matrix_size.uiWC *
(double)matrix_size.uiHB;
double gigaFlops =
(flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f);
printf("Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops\n",
gigaFlops, msecPerMatrixMul, flopsPerMatrixMul);
// copy result from device to host
checkCudaErrors(
cudaMemcpy(h_CUBLAS, d_C, mem_size_C, cudaMemcpyDeviceToHost));
// Destroy the handle
checkCudaErrors(cublasDestroy(handle));
}
// compute reference solution
printf("Computing result using host CPU...");
float *reference = (float *)malloc(mem_size_C);
matrixMulCPU(reference, h_A, h_B, matrix_size.uiHA, matrix_size.uiWA,
matrix_size.uiWB);
printf("done.\n");
// check result (CUBLAS)
bool resCUBLAS = sdkCompareL2fe(reference, h_CUBLAS, size_C, 1.0e-6f);
if (resCUBLAS != true) {
printDiff(reference, h_CUBLAS, matrix_size.uiWC, matrix_size.uiHC, 100,
1.0e-5f);
}
printf("Comparing CUBLAS Matrix Multiply with CPU results: %s\n",
(true == resCUBLAS) ? "PASS" : "FAIL");
printf(
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
"Results may vary when GPU Boost is enabled.\n");
// clean up memory
free(h_A);
free(h_B);
free(h_C);
free(reference);
checkCudaErrors(cudaFree(d_A));
checkCudaErrors(cudaFree(d_B));
checkCudaErrors(cudaFree(d_C));
if (resCUBLAS == true) {
return EXIT_SUCCESS; // return value = 1
} else {
return EXIT_FAILURE; // return value = 0
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("[Matrix Multiply CUBLAS] - Starting...\n");
int devID = 0, sizeMult = 5;
sMatrixSize matrix_size;
initializeCUDA(argc, argv, devID, sizeMult, matrix_size);
int matrix_result = matrixMultiply(argc, argv, devID, matrix_size);
return matrix_result;
}