forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduction.cpp
563 lines (452 loc) · 17.7 KB
/
reduction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Parallel reduction
This sample shows how to perform a reduction operation on an array of values
to produce a single value.
Reductions are a very common computation in parallel algorithms. Any time
an array of values needs to be reduced to a single value using a binary
associative operator, a reduction can be used. Example applications include
statistics computations such as mean and standard deviation, and image
processing applications such as finding the total luminance of an
image.
This code performs sum reductions, but any associative operator such as
min() or max() could also be used.
It assumes the input size is a power of 2.
COMMAND LINE ARGUMENTS
"--shmoo": Test performance for 1 to 32M elements with each of the 7
different kernels
"--n=<N>": Specify the number of elements to reduce (default
1048576)
"--threads=<N>": Specify the number of threads per block (default 128)
"--kernel=<N>": Specify which kernel to run (0-6, default 6)
"--maxblocks=<N>": Specify the maximum number of thread blocks to launch
(kernel 6 only, default 64)
"--cpufinal": Read back the per-block results and do final sum of block
sums on CPU (default false)
"--cputhresh=<N>": The threshold of number of blocks sums below which to
perform a CPU final reduction (default 1)
"-type=<T>": The datatype for the reduction, where T is "int",
"float", or "double" (default int)
*/
// CUDA Runtime
#include <cuda_runtime.h>
// Utilities and system includes
#include <helper_cuda.h>
#include <helper_functions.h>
#include <algorithm>
// includes, project
#include "reduction.h"
enum ReduceType { REDUCE_INT, REDUCE_FLOAT, REDUCE_DOUBLE };
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
template <class T>
bool runTest(int argc, char **argv, ReduceType datatype);
#define MAX_BLOCK_DIM_SIZE 65535
#ifdef WIN32
#define strcasecmp strcmpi
#endif
extern "C" bool isPow2(unsigned int x) { return ((x & (x - 1)) == 0); }
const char *getReduceTypeString(const ReduceType type) {
switch (type) {
case REDUCE_INT:
return "int";
case REDUCE_FLOAT:
return "float";
case REDUCE_DOUBLE:
return "double";
default:
return "unknown";
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("%s Starting...\n\n", argv[0]);
char *typeInput = 0;
getCmdLineArgumentString(argc, (const char **)argv, "type", &typeInput);
ReduceType datatype = REDUCE_INT;
if (0 != typeInput) {
if (!strcasecmp(typeInput, "float")) {
datatype = REDUCE_FLOAT;
} else if (!strcasecmp(typeInput, "double")) {
datatype = REDUCE_DOUBLE;
} else if (strcasecmp(typeInput, "int")) {
printf("Type %s is not recognized. Using default type int.\n\n",
typeInput);
}
}
cudaDeviceProp deviceProp;
int dev;
dev = findCudaDevice(argc, (const char **)argv);
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
printf("Using Device %d: %s\n\n", dev, deviceProp.name);
checkCudaErrors(cudaSetDevice(dev));
printf("Reducing array of type %s\n\n", getReduceTypeString(datatype));
bool bResult = false;
switch (datatype) {
default:
case REDUCE_INT:
bResult = runTest<int>(argc, argv, datatype);
break;
case REDUCE_FLOAT:
bResult = runTest<float>(argc, argv, datatype);
break;
case REDUCE_DOUBLE:
bResult = runTest<double>(argc, argv, datatype);
break;
}
printf(bResult ? "Test passed\n" : "Test failed!\n");
}
////////////////////////////////////////////////////////////////////////////////
//! Compute sum reduction on CPU
//! We use Kahan summation for an accurate sum of large arrays.
//! http://en.wikipedia.org/wiki/Kahan_summation_algorithm
//!
//! @param data pointer to input data
//! @param size number of input data elements
////////////////////////////////////////////////////////////////////////////////
template <class T>
T reduceCPU(T *data, int size) {
T sum = data[0];
T c = (T)0.0;
for (int i = 1; i < size; i++) {
T y = data[i] - c;
T t = sum + y;
c = (t - sum) - y;
sum = t;
}
return sum;
}
unsigned int nextPow2(unsigned int x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
#ifndef MIN
#define MIN(x, y) ((x < y) ? x : y)
#endif
////////////////////////////////////////////////////////////////////////////////
// Compute the number of threads and blocks to use for the given reduction
// kernel For the kernels >= 3, we set threads / block to the minimum of
// maxThreads and n/2. For kernels < 3, we set to the minimum of maxThreads and
// n. For kernel 6, we observe the maximum specified number of blocks, because
// each thread in that kernel can process a variable number of elements.
////////////////////////////////////////////////////////////////////////////////
void getNumBlocksAndThreads(int whichKernel, int n, int maxBlocks,
int maxThreads, int &blocks, int &threads) {
// get device capability, to avoid block/grid size exceed the upper bound
cudaDeviceProp prop;
int device;
checkCudaErrors(cudaGetDevice(&device));
checkCudaErrors(cudaGetDeviceProperties(&prop, device));
if (whichKernel < 3) {
threads = (n < maxThreads) ? nextPow2(n) : maxThreads;
blocks = (n + threads - 1) / threads;
} else {
threads = (n < maxThreads * 2) ? nextPow2((n + 1) / 2) : maxThreads;
blocks = (n + (threads * 2 - 1)) / (threads * 2);
}
if ((float)threads * blocks >
(float)prop.maxGridSize[0] * prop.maxThreadsPerBlock) {
printf("n is too large, please choose a smaller number!\n");
}
if (blocks > prop.maxGridSize[0]) {
printf(
"Grid size <%d> exceeds the device capability <%d>, set block size as "
"%d (original %d)\n",
blocks, prop.maxGridSize[0], threads * 2, threads);
blocks /= 2;
threads *= 2;
}
if (whichKernel >= 6) {
blocks = MIN(maxBlocks, blocks);
}
}
////////////////////////////////////////////////////////////////////////////////
// This function performs a reduction of the input data multiple times and
// measures the average reduction time.
////////////////////////////////////////////////////////////////////////////////
template <class T>
T benchmarkReduce(int n, int numThreads, int numBlocks, int maxThreads,
int maxBlocks, int whichKernel, int testIterations,
bool cpuFinalReduction, int cpuFinalThreshold,
StopWatchInterface *timer, T *h_odata, T *d_idata,
T *d_odata) {
T gpu_result = 0;
bool needReadBack = true;
T *d_intermediateSums;
checkCudaErrors(
cudaMalloc((void **)&d_intermediateSums, sizeof(T) * numBlocks));
for (int i = 0; i < testIterations; ++i) {
gpu_result = 0;
cudaDeviceSynchronize();
sdkStartTimer(&timer);
// execute the kernel
reduce<T>(n, numThreads, numBlocks, whichKernel, d_idata, d_odata);
// check if kernel execution generated an error
getLastCudaError("Kernel execution failed");
if (cpuFinalReduction) {
// sum partial sums from each block on CPU
// copy result from device to host
checkCudaErrors(cudaMemcpy(h_odata, d_odata, numBlocks * sizeof(T),
cudaMemcpyDeviceToHost));
for (int i = 0; i < numBlocks; i++) {
gpu_result += h_odata[i];
}
needReadBack = false;
} else {
// sum partial block sums on GPU
int s = numBlocks;
int kernel = whichKernel;
while (s > cpuFinalThreshold) {
int threads = 0, blocks = 0;
getNumBlocksAndThreads(kernel, s, maxBlocks, maxThreads, blocks,
threads);
checkCudaErrors(cudaMemcpy(d_intermediateSums, d_odata, s * sizeof(T),
cudaMemcpyDeviceToDevice));
reduce<T>(s, threads, blocks, kernel, d_intermediateSums, d_odata);
if (kernel < 3) {
s = (s + threads - 1) / threads;
} else {
s = (s + (threads * 2 - 1)) / (threads * 2);
}
}
if (s > 1) {
// copy result from device to host
checkCudaErrors(cudaMemcpy(h_odata, d_odata, s * sizeof(T),
cudaMemcpyDeviceToHost));
for (int i = 0; i < s; i++) {
gpu_result += h_odata[i];
}
needReadBack = false;
}
}
cudaDeviceSynchronize();
sdkStopTimer(&timer);
}
if (needReadBack) {
// copy final sum from device to host
checkCudaErrors(
cudaMemcpy(&gpu_result, d_odata, sizeof(T), cudaMemcpyDeviceToHost));
}
checkCudaErrors(cudaFree(d_intermediateSums));
return gpu_result;
}
////////////////////////////////////////////////////////////////////////////////
// This function calls benchmarkReduce multiple times for a range of array sizes
// and prints a report in CSV (comma-separated value) format that can be used
// for generating a "shmoo" plot showing the performance for each kernel
// variation over a wide range of input sizes.
////////////////////////////////////////////////////////////////////////////////
template <class T>
void shmoo(int minN, int maxN, int maxThreads, int maxBlocks,
ReduceType datatype) {
// create random input data on CPU
unsigned int bytes = maxN * sizeof(T);
T *h_idata = (T *)malloc(bytes);
for (int i = 0; i < maxN; i++) {
// Keep the numbers small so we don't get truncation error in the sum
if (datatype == REDUCE_INT) {
h_idata[i] = (T)(rand() & 0xFF);
} else {
h_idata[i] = (rand() & 0xFF) / (T)RAND_MAX;
}
}
int maxNumBlocks = MIN(maxN / maxThreads, MAX_BLOCK_DIM_SIZE);
// allocate mem for the result on host side
T *h_odata = (T *)malloc(maxNumBlocks * sizeof(T));
// allocate device memory and data
T *d_idata = NULL;
T *d_odata = NULL;
checkCudaErrors(cudaMalloc((void **)&d_idata, bytes));
checkCudaErrors(cudaMalloc((void **)&d_odata, maxNumBlocks * sizeof(T)));
// copy data directly to device memory
checkCudaErrors(cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_odata, h_idata, maxNumBlocks * sizeof(T),
cudaMemcpyHostToDevice));
// warm-up
for (int kernel = 0; kernel < 8; kernel++) {
reduce<T>(maxN, maxThreads, maxNumBlocks, kernel, d_idata, d_odata);
}
int testIterations = 100;
StopWatchInterface *timer = 0;
sdkCreateTimer(&timer);
// print headers
printf(
"Time in milliseconds for various numbers of elements for each "
"kernel\n\n\n");
printf("Kernel");
for (int i = minN; i <= maxN; i *= 2) {
printf(", %d", i);
}
for (int kernel = 0; kernel < 8; kernel++) {
printf("\n%d", kernel);
for (int i = minN; i <= maxN; i *= 2) {
sdkResetTimer(&timer);
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(kernel, i, maxBlocks, maxThreads, numBlocks,
numThreads);
float reduceTime;
if (numBlocks <= MAX_BLOCK_DIM_SIZE) {
benchmarkReduce(i, numThreads, numBlocks, maxThreads, maxBlocks, kernel,
testIterations, false, 1, timer, h_odata, d_idata,
d_odata);
reduceTime = sdkGetAverageTimerValue(&timer);
} else {
reduceTime = -1.0;
}
printf(", %.5f", reduceTime);
}
}
// cleanup
sdkDeleteTimer(&timer);
free(h_idata);
free(h_odata);
checkCudaErrors(cudaFree(d_idata));
checkCudaErrors(cudaFree(d_odata));
}
////////////////////////////////////////////////////////////////////////////////
// The main function which runs the reduction test.
////////////////////////////////////////////////////////////////////////////////
template <class T>
bool runTest(int argc, char **argv, ReduceType datatype) {
int size = 1 << 24; // number of elements to reduce
int maxThreads = 256; // number of threads per block
int whichKernel = 7;
int maxBlocks = 64;
bool cpuFinalReduction = false;
int cpuFinalThreshold = 1;
if (checkCmdLineFlag(argc, (const char **)argv, "n")) {
size = getCmdLineArgumentInt(argc, (const char **)argv, "n");
}
if (checkCmdLineFlag(argc, (const char **)argv, "threads")) {
maxThreads = getCmdLineArgumentInt(argc, (const char **)argv, "threads");
}
if (checkCmdLineFlag(argc, (const char **)argv, "kernel")) {
whichKernel = getCmdLineArgumentInt(argc, (const char **)argv, "kernel");
}
if (checkCmdLineFlag(argc, (const char **)argv, "maxblocks")) {
maxBlocks = getCmdLineArgumentInt(argc, (const char **)argv, "maxblocks");
}
printf("%d elements\n", size);
printf("%d threads (max)\n", maxThreads);
cpuFinalReduction = checkCmdLineFlag(argc, (const char **)argv, "cpufinal");
if (checkCmdLineFlag(argc, (const char **)argv, "cputhresh")) {
cpuFinalThreshold =
getCmdLineArgumentInt(argc, (const char **)argv, "cputhresh");
}
bool runShmoo = checkCmdLineFlag(argc, (const char **)argv, "shmoo");
if (runShmoo) {
shmoo<T>(1, 33554432, maxThreads, maxBlocks, datatype);
} else {
// create random input data on CPU
unsigned int bytes = size * sizeof(T);
T *h_idata = (T *)malloc(bytes);
for (int i = 0; i < size; i++) {
// Keep the numbers small so we don't get truncation error in the sum
if (datatype == REDUCE_INT) {
h_idata[i] = (T)(rand() & 0xFF);
} else {
h_idata[i] = (rand() & 0xFF) / (T)RAND_MAX;
}
}
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(whichKernel, size, maxBlocks, maxThreads, numBlocks,
numThreads);
if (numBlocks == 1) {
cpuFinalThreshold = 1;
}
// allocate mem for the result on host side
T *h_odata = (T *)malloc(numBlocks * sizeof(T));
printf("%d blocks\n\n", numBlocks);
// allocate device memory and data
T *d_idata = NULL;
T *d_odata = NULL;
checkCudaErrors(cudaMalloc((void **)&d_idata, bytes));
checkCudaErrors(cudaMalloc((void **)&d_odata, numBlocks * sizeof(T)));
// copy data directly to device memory
checkCudaErrors(
cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_odata, h_idata, numBlocks * sizeof(T),
cudaMemcpyHostToDevice));
// warm-up
reduce<T>(size, numThreads, numBlocks, whichKernel, d_idata, d_odata);
int testIterations = 100;
StopWatchInterface *timer = 0;
sdkCreateTimer(&timer);
T gpu_result = 0;
gpu_result =
benchmarkReduce<T>(size, numThreads, numBlocks, maxThreads, maxBlocks,
whichKernel, testIterations, cpuFinalReduction,
cpuFinalThreshold, timer, h_odata, d_idata, d_odata);
double reduceTime = sdkGetAverageTimerValue(&timer) * 1e-3;
printf(
"Reduction, Throughput = %.4f GB/s, Time = %.5f s, Size = %u Elements, "
"NumDevsUsed = %d, Workgroup = %u\n",
1.0e-9 * ((double)bytes) / reduceTime, reduceTime, size, 1, numThreads);
// compute reference solution
T cpu_result = reduceCPU<T>(h_idata, size);
int precision = 0;
double threshold = 0;
double diff = 0;
if (datatype == REDUCE_INT) {
printf("\nGPU result = %d\n", (int)gpu_result);
printf("CPU result = %d\n\n", (int)cpu_result);
} else {
if (datatype == REDUCE_FLOAT) {
precision = 8;
threshold = 1e-8 * size;
} else {
precision = 12;
threshold = 1e-12 * size;
}
printf("\nGPU result = %.*f\n", precision, (double)gpu_result);
printf("CPU result = %.*f\n\n", precision, (double)cpu_result);
diff = fabs((double)gpu_result - (double)cpu_result);
}
// cleanup
sdkDeleteTimer(&timer);
free(h_idata);
free(h_odata);
checkCudaErrors(cudaFree(d_idata));
checkCudaErrors(cudaFree(d_odata));
if (datatype == REDUCE_INT) {
return (gpu_result == cpu_result);
} else {
return (diff < threshold);
}
}
return true;
}