forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscalarProd.cu
168 lines (142 loc) · 6.21 KB
/
scalarProd.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample calculates scalar products of a
* given set of input vector pairs
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <helper_functions.h>
#include <helper_cuda.h>
///////////////////////////////////////////////////////////////////////////////
// Calculate scalar products of VectorN vectors of ElementN elements on CPU
///////////////////////////////////////////////////////////////////////////////
extern "C" void scalarProdCPU(float *h_C, float *h_A, float *h_B, int vectorN,
int elementN);
///////////////////////////////////////////////////////////////////////////////
// Calculate scalar products of VectorN vectors of ElementN elements on GPU
///////////////////////////////////////////////////////////////////////////////
#include "scalarProd_kernel.cuh"
////////////////////////////////////////////////////////////////////////////////
// Helper function, returning uniformly distributed
// random float in [low, high] range
////////////////////////////////////////////////////////////////////////////////
float RandFloat(float low, float high) {
float t = (float)rand() / (float)RAND_MAX;
return (1.0f - t) * low + t * high;
}
///////////////////////////////////////////////////////////////////////////////
// Data configuration
///////////////////////////////////////////////////////////////////////////////
// Total number of input vector pairs; arbitrary
const int VECTOR_N = 256;
// Number of elements per vector; arbitrary,
// but strongly preferred to be a multiple of warp size
// to meet memory coalescing constraints
const int ELEMENT_N = 4096;
// Total number of data elements
const int DATA_N = VECTOR_N * ELEMENT_N;
const int DATA_SZ = DATA_N * sizeof(float);
const int RESULT_SZ = VECTOR_N * sizeof(float);
///////////////////////////////////////////////////////////////////////////////
// Main program
///////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
float *h_A, *h_B, *h_C_CPU, *h_C_GPU;
float *d_A, *d_B, *d_C;
double delta, ref, sum_delta, sum_ref, L1norm;
StopWatchInterface *hTimer = NULL;
int i;
printf("%s Starting...\n\n", argv[0]);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
sdkCreateTimer(&hTimer);
printf("Initializing data...\n");
printf("...allocating CPU memory.\n");
h_A = (float *)malloc(DATA_SZ);
h_B = (float *)malloc(DATA_SZ);
h_C_CPU = (float *)malloc(RESULT_SZ);
h_C_GPU = (float *)malloc(RESULT_SZ);
printf("...allocating GPU memory.\n");
checkCudaErrors(cudaMalloc((void **)&d_A, DATA_SZ));
checkCudaErrors(cudaMalloc((void **)&d_B, DATA_SZ));
checkCudaErrors(cudaMalloc((void **)&d_C, RESULT_SZ));
printf("...generating input data in CPU mem.\n");
srand(123);
// Generating input data on CPU
for (i = 0; i < DATA_N; i++) {
h_A[i] = RandFloat(0.0f, 1.0f);
h_B[i] = RandFloat(0.0f, 1.0f);
}
printf("...copying input data to GPU mem.\n");
// Copy options data to GPU memory for further processing
checkCudaErrors(cudaMemcpy(d_A, h_A, DATA_SZ, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_B, h_B, DATA_SZ, cudaMemcpyHostToDevice));
printf("Data init done.\n");
printf("Executing GPU kernel...\n");
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
scalarProdGPU<<<128, 256>>>(d_C, d_A, d_B, VECTOR_N, ELEMENT_N);
getLastCudaError("scalarProdGPU() execution failed\n");
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
printf("GPU time: %f msecs.\n", sdkGetTimerValue(&hTimer));
printf("Reading back GPU result...\n");
// Read back GPU results to compare them to CPU results
checkCudaErrors(cudaMemcpy(h_C_GPU, d_C, RESULT_SZ, cudaMemcpyDeviceToHost));
printf("Checking GPU results...\n");
printf("..running CPU scalar product calculation\n");
scalarProdCPU(h_C_CPU, h_A, h_B, VECTOR_N, ELEMENT_N);
printf("...comparing the results\n");
// Calculate max absolute difference and L1 distance
// between CPU and GPU results
sum_delta = 0;
sum_ref = 0;
for (i = 0; i < VECTOR_N; i++) {
delta = fabs(h_C_GPU[i] - h_C_CPU[i]);
ref = h_C_CPU[i];
sum_delta += delta;
sum_ref += ref;
}
L1norm = sum_delta / sum_ref;
printf("Shutting down...\n");
checkCudaErrors(cudaFree(d_C));
checkCudaErrors(cudaFree(d_B));
checkCudaErrors(cudaFree(d_A));
free(h_C_GPU);
free(h_C_CPU);
free(h_B);
free(h_A);
sdkDeleteTimer(&hTimer);
printf("L1 error: %E\n", L1norm);
printf((L1norm < 1e-6) ? "Test passed\n" : "Test failed!\n");
exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE);
}