forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernels.cuh
208 lines (173 loc) · 5.76 KB
/
kernels.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
/*
* Various kernels and functors used throughout the algorithm. For details
* on usage see "SegmentationTreeBuilder::invokeStep()".
*/
#ifndef _KERNELS_H_
#define _KERNELS_H_
#include <stdio.h>
#include <thrust/functional.h>
#include "common.cuh"
// Functors used with thrust library.
template <typename Input>
struct IsGreaterEqualThan : public thrust::unary_function<Input, bool>
{
__host__ __device__ IsGreaterEqualThan(uint upperBound) :
upperBound_(upperBound) {}
__host__ __device__ bool operator()(const Input &value) const
{
return value >= upperBound_;
}
uint upperBound_;
};
// CUDA kernels.
__global__ void addScalar(uint *array, int scalar, uint size)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < size)
{
array[tid] += scalar;
}
}
__global__ void markSegments(const uint *verticesOffsets,
uint *flags,
uint verticesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < verticesCount)
{
flags[verticesOffsets[tid]] = 1;
}
}
__global__ void getVerticesMapping(const uint *clusteredVerticesIDs,
const uint *newVerticesIDs,
uint *verticesMapping,
uint verticesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < verticesCount)
{
uint vertexID = clusteredVerticesIDs[tid];
verticesMapping[vertexID] = newVerticesIDs[tid];
}
}
__global__ void getSuccessors(const uint *verticesOffsets,
const uint *minScannedEdges,
uint *successors,
uint verticesCount,
uint edgesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < verticesCount)
{
uint successorPos = (tid < verticesCount - 1) ?
(verticesOffsets[tid + 1] - 1) :
(edgesCount - 1);
successors[tid] = minScannedEdges[successorPos];
}
}
__global__ void removeCycles(uint *successors,
uint verticesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < verticesCount)
{
uint successor = successors[tid];
uint nextSuccessor = successors[successor];
if (tid == nextSuccessor)
{
if (tid < successor)
{
successors[tid] = tid;
}
else
{
successors[successor] = successor;
}
}
}
}
__global__ void getRepresentatives(const uint *successors,
uint *representatives,
uint verticesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < verticesCount)
{
uint successor = successors[tid];
uint nextSuccessor = successors[successor];
while (successor != nextSuccessor)
{
successor = nextSuccessor;
nextSuccessor = successors[nextSuccessor];
}
representatives[tid] = successor;
}
}
__global__ void invalidateLoops(const uint *startpoints,
const uint *verticesMapping,
uint *edges,
uint edgesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < edgesCount)
{
uint startpoint = startpoints[tid];
uint &endpoint = edges[tid];
uint newStartpoint = verticesMapping[startpoint];
uint newEndpoint = verticesMapping[endpoint];
if (newStartpoint == newEndpoint)
{
endpoint = UINT_MAX;
}
}
}
__global__ void calculateEdgesInfo(const uint *startpoints,
const uint *verticesMapping,
const uint *edges,
const float *weights,
uint *newStartpoints,
uint *survivedEdgesIDs,
uint edgesCount,
uint newVerticesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < edgesCount)
{
uint startpoint = startpoints[tid];
uint endpoint = edges[tid];
newStartpoints[tid] = endpoint < UINT_MAX ?
verticesMapping[startpoint] :
newVerticesCount + verticesMapping[startpoint];
survivedEdgesIDs[tid] = endpoint < UINT_MAX ?
tid :
UINT_MAX;
}
}
__global__ void makeNewEdges(const uint *survivedEdgesIDs,
const uint *verticesMapping,
const uint *edges,
const float *weights,
uint *newEdges,
float *newWeights,
uint edgesCount)
{
uint tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < edgesCount)
{
uint edgeID = survivedEdgesIDs[tid];
uint oldEdge = edges[edgeID];
newEdges[tid] = verticesMapping[oldEdge];
newWeights[tid] = weights[edgeID];
}
}
#endif // #ifndef _KERNELS_H_