forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththreadFenceReduction.cu
465 lines (369 loc) · 15.3 KB
/
threadFenceReduction.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Parallel reduction
This sample shows how to perform a reduction operation on an array of values
to produce a single value in a single kernel (as opposed to two or more
kernel calls as shown in the "reduction" CUDA Sample). Single-pass
reduction requires global atomic instructions (Compute Capability 1.1 or
later) and the __threadfence() intrinsic (CUDA 2.2 or later).
Reductions are a very common computation in parallel algorithms. Any time
an array of values needs to be reduced to a single value using a binary
associative operator, a reduction can be used. Example applications include
statistics computations such as mean and standard deviation, and image
processing applications such as finding the total luminance of an
image.
This code performs sum reductions, but any associative operator such as
min() or max() could also be used.
It assumes the input size is a power of 2.
COMMAND LINE ARGUMENTS
"--shmoo": Test performance for 1 to 32M elements with each of the
7 different kernels
"--n=<N>": Specify the number of elements to reduce (default 1048576)
"--threads=<N>": Specify the number of threads per block (default 128)
"--maxblocks=<N>": Specify the maximum number of thread blocks to launch
(kernel 6 only, default 64)
"--cpufinal": Read back the per-block results and do final sum of block
sums on CPU (default false)
"--cputhresh=<N>": The threshold of number of blocks sums below which to
perform a CPU final reduction (default 1)
"--multipass": Use a multipass reduction instead of a single-pass reduction
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// includes, project
#include <helper_functions.h>
#include <helper_cuda.h>
#define VERSION_MAJOR (CUDART_VERSION / 1000)
#define VERSION_MINOR (CUDART_VERSION % 100) / 10
const char *sSDKsample = "threadFenceReduction";
#if CUDART_VERSION >= 2020
#include "threadFenceReduction_kernel.cuh"
#else
#pragma comment(user, "CUDA 2.2 is required to build for threadFenceReduction")
#endif
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
bool runTest(int argc, char **argv);
extern "C" {
void reduce(int size, int threads, int blocks, float *d_idata, float *d_odata);
void reduceSinglePass(int size, int threads, int blocks, float *d_idata,
float *d_odata);
}
#if CUDART_VERSION < 2020
void reduce(int size, int threads, int blocks, float *d_idata, float *d_odata) {
printf("reduce(), compiler not supported, aborting tests\n");
}
void reduceSinglePass(int size, int threads, int blocks, float *d_idata,
float *d_odata) {
printf("reduceSinglePass(), compiler not supported, aborting tests\n");
}
#endif
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
cudaDeviceProp deviceProp;
deviceProp.major = 0;
deviceProp.minor = 0;
int dev;
printf("%s Starting...\n\n", sSDKsample);
dev = findCudaDevice(argc, (const char **)argv);
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
printf("GPU Device supports SM %d.%d compute capability\n\n",
deviceProp.major, deviceProp.minor);
bool bTestResult = false;
#if CUDART_VERSION >= 2020
bTestResult = runTest(argc, argv);
#else
print_NVCC_min_spec(sSDKsample, "2.2", "Version 185");
exit(EXIT_SUCCESS);
#endif
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
////////////////////////////////////////////////////////////////////////////////
//! Compute sum reduction on CPU
//! We use Kahan summation for an accurate sum of large arrays.
//! http://en.wikipedia.org/wiki/Kahan_summation_algorithm
//!
//! @param data pointer to input data
//! @param size number of input data elements
////////////////////////////////////////////////////////////////////////////////
template <class T>
T reduceCPU(T *data, int size) {
T sum = data[0];
T c = (T)0.0;
for (int i = 1; i < size; i++) {
T y = data[i] - c;
T t = sum + y;
c = (t - sum) - y;
sum = t;
}
return sum;
}
unsigned int nextPow2(unsigned int x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
////////////////////////////////////////////////////////////////////////////////
// Compute the number of threads and blocks to use for the reduction
// We set threads / block to the minimum of maxThreads and n/2.
////////////////////////////////////////////////////////////////////////////////
void getNumBlocksAndThreads(int n, int maxBlocks, int maxThreads, int &blocks,
int &threads) {
if (n == 1) {
threads = 1;
blocks = 1;
} else {
threads = (n < maxThreads * 2) ? nextPow2(n / 2) : maxThreads;
blocks = max(1, n / (threads * 2));
}
blocks = min(maxBlocks, blocks);
}
////////////////////////////////////////////////////////////////////////////////
// This function performs a reduction of the input data multiple times and
// measures the average reduction time.
////////////////////////////////////////////////////////////////////////////////
float benchmarkReduce(int n, int numThreads, int numBlocks, int maxThreads,
int maxBlocks, int testIterations, bool multiPass,
bool cpuFinalReduction, int cpuFinalThreshold,
StopWatchInterface *timer, float *h_odata, float *d_idata,
float *d_odata) {
float gpu_result = 0;
bool bNeedReadback = true;
cudaError_t error;
for (int i = 0; i < testIterations; ++i) {
gpu_result = 0;
unsigned int retCnt = 0;
error = setRetirementCount(retCnt);
checkCudaErrors(error);
cudaDeviceSynchronize();
sdkStartTimer(&timer);
if (multiPass) {
// execute the kernel
reduce(n, numThreads, numBlocks, d_idata, d_odata);
// check if kernel execution generated an error
getLastCudaError("Kernel execution failed");
if (cpuFinalReduction) {
// sum partial sums from each block on CPU
// copy result from device to host
error = cudaMemcpy(h_odata, d_odata, numBlocks * sizeof(float),
cudaMemcpyDeviceToHost);
checkCudaErrors(error);
for (int i = 0; i < numBlocks; i++) {
gpu_result += h_odata[i];
}
bNeedReadback = false;
} else {
// sum partial block sums on GPU
int s = numBlocks;
while (s > cpuFinalThreshold) {
int threads = 0, blocks = 0;
getNumBlocksAndThreads(s, maxBlocks, maxThreads, blocks, threads);
reduce(s, threads, blocks, d_odata, d_odata);
s = s / (threads * 2);
}
if (s > 1) {
// copy result from device to host
error = cudaMemcpy(h_odata, d_odata, s * sizeof(float),
cudaMemcpyDeviceToHost);
checkCudaErrors(error);
for (int i = 0; i < s; i++) {
gpu_result += h_odata[i];
}
bNeedReadback = false;
}
}
} else {
getLastCudaError("Kernel execution failed");
// execute the kernel
reduceSinglePass(n, numThreads, numBlocks, d_idata, d_odata);
// check if kernel execution generated an error
getLastCudaError("Kernel execution failed");
}
cudaDeviceSynchronize();
sdkStopTimer(&timer);
}
if (bNeedReadback) {
// copy final sum from device to host
error =
cudaMemcpy(&gpu_result, d_odata, sizeof(float), cudaMemcpyDeviceToHost);
checkCudaErrors(error);
}
return gpu_result;
}
////////////////////////////////////////////////////////////////////////////////
// This function calls benchmarkReduce multiple times for a range of array sizes
// and prints a report in CSV (comma-separated value) format that can be used
// for generating a "shmoo" plot showing the performance for each kernel
// variation over a wide range of input sizes.
////////////////////////////////////////////////////////////////////////////////
void shmoo(int minN, int maxN, int maxThreads, int maxBlocks) {
// create random input data on CPU
unsigned int bytes = maxN * sizeof(float);
float *h_idata = (float *)malloc(bytes);
for (int i = 0; i < maxN; i++) {
// Keep the numbers small so we don't get truncation error in the sum
h_idata[i] = (rand() & 0xFF) / (float)RAND_MAX;
}
int maxNumBlocks = min(65535, maxN / maxThreads);
// allocate mem for the result on host side
float *h_odata = (float *)malloc(maxNumBlocks * sizeof(float));
// allocate device memory and data
float *d_idata = NULL;
float *d_odata = NULL;
checkCudaErrors(cudaMalloc((void **)&d_idata, bytes));
checkCudaErrors(cudaMalloc((void **)&d_odata, maxNumBlocks * sizeof(float)));
// copy data directly to device memory
checkCudaErrors(cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_odata, h_idata, maxNumBlocks * sizeof(float),
cudaMemcpyHostToDevice));
// warm-up
reduce(maxN, maxThreads, maxNumBlocks, d_idata, d_odata);
int testIterations = 100;
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
// print headers
printf("N, %d blocks one pass, %d blocks multipass\n", maxBlocks, maxBlocks);
for (int i = minN; i <= maxN; i *= 2) {
printf("%d, ", i);
for (int multiPass = 0; multiPass <= 1; multiPass++) {
sdkResetTimer(&timer);
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(i, maxBlocks, maxThreads, numBlocks, numThreads);
benchmarkReduce(i, numThreads, numBlocks, maxThreads, maxBlocks,
testIterations, multiPass == 1, false, 1, timer, h_odata,
d_idata, d_odata);
float reduceTime = sdkGetAverageTimerValue(&timer);
printf("%f%s", reduceTime, multiPass == 0 ? ", " : "\n");
}
}
printf("\n");
// cleanup
sdkDeleteTimer(&timer);
free(h_idata);
free(h_odata);
cudaFree(d_idata);
cudaFree(d_odata);
}
////////////////////////////////////////////////////////////////////////////////
// The main function which runs the reduction test.
////////////////////////////////////////////////////////////////////////////////
bool runTest(int argc, char **argv) {
int size = 1 << 20; // number of elements to reduce
int maxThreads = 128; // number of threads per block
int maxBlocks = 64;
bool cpuFinalReduction = false;
int cpuFinalThreshold = 1;
bool multipass = false;
bool bTestResult = false;
if (checkCmdLineFlag(argc, (const char **)argv, "n")) {
size = getCmdLineArgumentInt(argc, (const char **)argv, "n");
}
if (checkCmdLineFlag(argc, (const char **)argv, "threads")) {
maxThreads = getCmdLineArgumentInt(argc, (const char **)argv, "threads");
}
if (checkCmdLineFlag(argc, (const char **)argv, "maxblocks")) {
maxBlocks = getCmdLineArgumentInt(argc, (const char **)argv, "maxblocks");
}
printf("%d elements\n", size);
printf("%d threads (max)\n", maxThreads);
cpuFinalReduction = checkCmdLineFlag(argc, (const char **)argv, "cpufinal");
multipass = checkCmdLineFlag(argc, (const char **)argv, "multipass");
if (checkCmdLineFlag(argc, (const char **)argv, "cputhresh")) {
cpuFinalThreshold =
getCmdLineArgumentInt(argc, (const char **)argv, "cputhresh");
}
bool runShmoo = checkCmdLineFlag(argc, (const char **)argv, "shmoo");
if (runShmoo) {
shmoo(1, 33554432, maxThreads, maxBlocks);
} else {
// create random input data on CPU
unsigned int bytes = size * sizeof(float);
float *h_idata = (float *)malloc(bytes);
for (int i = 0; i < size; i++) {
// Keep the numbers small so we don't get truncation error in the sum
h_idata[i] = (rand() & 0xFF) / (float)RAND_MAX;
}
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(size, maxBlocks, maxThreads, numBlocks, numThreads);
if (numBlocks == 1) {
cpuFinalThreshold = 1;
}
// allocate mem for the result on host side
float *h_odata = (float *)malloc(numBlocks * sizeof(float));
printf("%d blocks\n", numBlocks);
// allocate device memory and data
float *d_idata = NULL;
float *d_odata = NULL;
checkCudaErrors(cudaMalloc((void **)&d_idata, bytes));
checkCudaErrors(cudaMalloc((void **)&d_odata, numBlocks * sizeof(float)));
// copy data directly to device memory
checkCudaErrors(
cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_odata, h_idata, numBlocks * sizeof(float),
cudaMemcpyHostToDevice));
// warm-up
reduce(size, numThreads, numBlocks, d_idata, d_odata);
int testIterations = 100;
StopWatchInterface *timer = 0;
sdkCreateTimer(&timer);
float gpu_result = 0;
gpu_result =
benchmarkReduce(size, numThreads, numBlocks, maxThreads, maxBlocks,
testIterations, multipass, cpuFinalReduction,
cpuFinalThreshold, timer, h_odata, d_idata, d_odata);
float reduceTime = sdkGetAverageTimerValue(&timer);
printf("Average time: %f ms\n", reduceTime);
printf("Bandwidth: %f GB/s\n\n",
(size * sizeof(int)) / (reduceTime * 1.0e6));
// compute reference solution
float cpu_result = reduceCPU<float>(h_idata, size);
printf("GPU result = %0.12f\n", gpu_result);
printf("CPU result = %0.12f\n", cpu_result);
double threshold = 1e-8 * size;
double diff = abs((double)gpu_result - (double)cpu_result);
bTestResult = (diff < threshold);
// cleanup
sdkDeleteTimer(&timer);
free(h_idata);
free(h_odata);
cudaFree(d_idata);
cudaFree(d_odata);
}
return bTestResult;
}