forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranspose.cu
613 lines (491 loc) · 19.8 KB
/
transpose.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// -----------------------------------------------------------------------------
// Transpose
//
// This file contains both device and host code for transposing a floating-point
// matrix. It performs several transpose kernels, which incrementally improve
// performance through coalescing, removing shared memory bank conflicts, and
// eliminating partition camping. Several of the kernels perform a copy, used
// to represent the best case performance that a transpose can achieve.
//
// Please see the whitepaper in the docs folder of the transpose project for a
// detailed description of this performance study.
// -----------------------------------------------------------------------------
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// Utilities and system includes
#include <helper_string.h> // helper for string parsing
#include <helper_image.h> // helper for image and data comparison
#include <helper_cuda.h> // helper for cuda error checking functions
const char *sSDKsample = "Transpose";
// Each block transposes/copies a tile of TILE_DIM x TILE_DIM elements
// using TILE_DIM x BLOCK_ROWS threads, so that each thread transposes
// TILE_DIM/BLOCK_ROWS elements. TILE_DIM must be an integral multiple of
// BLOCK_ROWS
#define TILE_DIM 16
#define BLOCK_ROWS 16
// This sample assumes that MATRIX_SIZE_X = MATRIX_SIZE_Y
int MATRIX_SIZE_X = 1024;
int MATRIX_SIZE_Y = 1024;
int MUL_FACTOR = TILE_DIM;
#define FLOOR(a, b) (a - (a % b))
// Compute the tile size necessary to illustrate performance cases for SM20+
// hardware
int MAX_TILES = (FLOOR(MATRIX_SIZE_X, 512) * FLOOR(MATRIX_SIZE_Y, 512)) /
(TILE_DIM * TILE_DIM);
// Number of repetitions used for timing. Two sets of repetitions are
// performed: 1) over kernel launches and 2) inside the kernel over just the
// loads and stores
#define NUM_REPS 100
// -------------------------------------------------------
// Copies
// width and height must be integral multiples of TILE_DIM
// -------------------------------------------------------
__global__ void copy(float *odata, float *idata, int width, int height) {
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + width * yIndex;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index + i * width] = idata[index + i * width];
}
}
__global__ void copySharedMem(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + width * yIndex;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
if (xIndex < width && yIndex < height) {
tile[threadIdx.y][threadIdx.x] = idata[index];
}
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
if (xIndex < height && yIndex < width) {
odata[index] = tile[threadIdx.y][threadIdx.x];
}
}
}
// -------------------------------------------------------
// Transposes
// width and height must be integral multiples of TILE_DIM
// -------------------------------------------------------
__global__ void transposeNaive(float *odata, float *idata, int width,
int height) {
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + width * yIndex;
int index_out = yIndex + height * xIndex;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i] = idata[index_in + i * width];
}
}
// coalesced transpose (with bank conflicts)
__global__ void transposeCoalesced(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
}
}
// Coalesced transpose with no bank conflicts
__global__ void transposeNoBankConflicts(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
}
}
// Transpose that effectively reorders execution of thread blocks along
// diagonals of the matrix (also coalesced and has no bank conflicts)
//
// Here blockIdx.x is interpreted as the distance along a diagonal and
// blockIdx.y as corresponding to different diagonals
//
// blockIdx_x and blockIdx_y expressions map the diagonal coordinates to the
// more commonly used cartesian coordinates so that the only changes to the code
// from the coalesced version are the calculation of the blockIdx_x and
// blockIdx_y and replacement of blockIdx.x and bloclIdx.y with the subscripted
// versions in the remaining code
__global__ void transposeDiagonal(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
int blockIdx_x, blockIdx_y;
// do diagonal reordering
if (width == height) {
blockIdx_y = blockIdx.x;
blockIdx_x = (blockIdx.x + blockIdx.y) % gridDim.x;
} else {
int bid = blockIdx.x + gridDim.x * blockIdx.y;
blockIdx_y = bid % gridDim.y;
blockIdx_x = ((bid / gridDim.y) + blockIdx_y) % gridDim.x;
}
// from here on the code is same as previous kernel except blockIdx_x replaces
// blockIdx.x and similarly for y
int xIndex = blockIdx_x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx_y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx_y * TILE_DIM + threadIdx.x;
yIndex = blockIdx_x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
tile[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = tile[threadIdx.x][threadIdx.y + i];
}
}
// --------------------------------------------------------------------
// Partial transposes
// NB: the coarse- and fine-grained routines only perform part of a
// transpose and will fail the test against the reference solution
//
// They are used to assess performance characteristics of different
// components of a full transpose
// --------------------------------------------------------------------
__global__ void transposeFineGrained(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float block[TILE_DIM][TILE_DIM + 1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + (yIndex)*width;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
block[threadIdx.y + i][threadIdx.x] = idata[index + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index + i * height] = block[threadIdx.x][threadIdx.y + i];
}
}
__global__ void transposeCoarseGrained(float *odata, float *idata, int width,
int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float block[TILE_DIM][TILE_DIM + 1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
block[threadIdx.y + i][threadIdx.x] = idata[index_in + i * width];
}
cg::sync(cta);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i * height] = block[threadIdx.y + i][threadIdx.x];
}
}
// ---------------------
// host utility routines
// ---------------------
void computeTransposeGold(float *gold, float *idata, const int size_x,
const int size_y) {
for (int y = 0; y < size_y; ++y) {
for (int x = 0; x < size_x; ++x) {
gold[(x * size_y) + y] = idata[(y * size_x) + x];
}
}
}
void getParams(int argc, char **argv, cudaDeviceProp &deviceProp, int &size_x,
int &size_y, int max_tile_dim) {
// set matrix size (if (x,y) dim of matrix is not square, then this will have
// to be modified
if (checkCmdLineFlag(argc, (const char **)argv, "dimX")) {
size_x = getCmdLineArgumentInt(argc, (const char **)argv, "dimX");
if (size_x > max_tile_dim) {
printf("> MatrixSize X = %d is greater than the recommended size = %d\n",
size_x, max_tile_dim);
} else {
printf("> MatrixSize X = %d\n", size_x);
}
} else {
size_x = max_tile_dim;
size_x = FLOOR(size_x, 512);
}
if (checkCmdLineFlag(argc, (const char **)argv, "dimY")) {
size_y = getCmdLineArgumentInt(argc, (const char **)argv, "dimY");
if (size_y > max_tile_dim) {
printf("> MatrixSize Y = %d is greater than the recommended size = %d\n",
size_y, max_tile_dim);
} else {
printf("> MatrixSize Y = %d\n", size_y);
}
} else {
size_y = max_tile_dim;
size_y = FLOOR(size_y, 512);
}
}
void showHelp() {
printf("\n%s : Command line options\n", sSDKsample);
printf("\t-device=n (where n=0,1,2.... for the GPU device)\n\n");
printf("> The default matrix size can be overridden with these parameters\n");
printf("\t-dimX=row_dim_size (matrix row dimensions)\n");
printf("\t-dimY=col_dim_size (matrix column dimensions)\n");
}
// ----
// main
// ----
int main(int argc, char **argv) {
// Start logs
printf("%s Starting...\n\n", sSDKsample);
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
showHelp();
return 0;
}
int devID = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
// get number of SMs on this GPU
checkCudaErrors(cudaGetDevice(&devID));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
// compute the scaling factor (for GPUs with fewer MPs)
float scale_factor, total_tiles;
scale_factor =
max((192.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
(float)deviceProp.multiProcessorCount)),
1.0f);
printf("> Device %d: \"%s\"\n", devID, deviceProp.name);
printf("> SM Capability %d.%d detected:\n", deviceProp.major,
deviceProp.minor);
// Calculate number of tiles we will run for the Matrix Transpose performance
// tests
int size_x, size_y, max_matrix_dim, matrix_size_test;
matrix_size_test = 512; // we round down max_matrix_dim for this perf test
total_tiles = (float)MAX_TILES / scale_factor;
max_matrix_dim =
FLOOR((int)(floor(sqrt(total_tiles)) * TILE_DIM), matrix_size_test);
// This is the minimum size allowed
if (max_matrix_dim == 0) {
max_matrix_dim = matrix_size_test;
}
printf("> [%s] has %d MP(s) x %d (Cores/MP) = %d (Cores)\n", deviceProp.name,
deviceProp.multiProcessorCount,
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
deviceProp.multiProcessorCount);
printf("> Compute performance scaling factor = %4.2f\n", scale_factor);
// Extract parameters if there are any, command line -dimx and -dimy can
// override any of these settings
getParams(argc, argv, deviceProp, size_x, size_y, max_matrix_dim);
if (size_x != size_y) {
printf(
"\n[%s] does not support non-square matrices (row_dim_size(%d) != "
"col_dim_size(%d))\nExiting...\n\n",
sSDKsample, size_x, size_y);
exit(EXIT_FAILURE);
}
if (size_x % TILE_DIM != 0 || size_y % TILE_DIM != 0) {
printf(
"[%s] Matrix size must be integral multiple of tile "
"size\nExiting...\n\n",
sSDKsample);
exit(EXIT_FAILURE);
}
// kernel pointer and descriptor
void (*kernel)(float *, float *, int, int);
const char *kernelName;
// execution configuration parameters
dim3 grid(size_x / TILE_DIM, size_y / TILE_DIM),
threads(TILE_DIM, BLOCK_ROWS);
if (grid.x < 1 || grid.y < 1) {
printf("[%s] grid size computation incorrect in test \nExiting...\n\n",
sSDKsample);
exit(EXIT_FAILURE);
}
// CUDA events
cudaEvent_t start, stop;
// size of memory required to store the matrix
size_t mem_size = static_cast<size_t>(sizeof(float) * size_x * size_y);
if (2 * mem_size > deviceProp.totalGlobalMem) {
printf("Input matrix size is larger than the available device memory!\n");
printf("Please choose a smaller size matrix\n");
exit(EXIT_FAILURE);
}
// allocate host memory
float *h_idata = (float *)malloc(mem_size);
float *h_odata = (float *)malloc(mem_size);
float *transposeGold = (float *)malloc(mem_size);
float *gold;
// allocate device memory
float *d_idata, *d_odata;
checkCudaErrors(cudaMalloc((void **)&d_idata, mem_size));
checkCudaErrors(cudaMalloc((void **)&d_odata, mem_size));
// initialize host data
for (int i = 0; i < (size_x * size_y); ++i) {
h_idata[i] = (float)i;
}
// copy host data to device
checkCudaErrors(
cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice));
// Compute reference transpose solution
computeTransposeGold(transposeGold, h_idata, size_x, size_y);
// print out common data for all kernels
printf(
"\nMatrix size: %dx%d (%dx%d tiles), tile size: %dx%d, block size: "
"%dx%d\n\n",
size_x, size_y, size_x / TILE_DIM, size_y / TILE_DIM, TILE_DIM, TILE_DIM,
TILE_DIM, BLOCK_ROWS);
// initialize events
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
//
// loop over different kernels
//
bool success = true;
for (int k = 0; k < 8; k++) {
// set kernel pointer
switch (k) {
case 0:
kernel = ©
kernelName = "simple copy ";
break;
case 1:
kernel = ©SharedMem;
kernelName = "shared memory copy";
break;
case 2:
kernel = &transposeNaive;
kernelName = "naive ";
break;
case 3:
kernel = &transposeCoalesced;
kernelName = "coalesced ";
break;
case 4:
kernel = &transposeNoBankConflicts;
kernelName = "optimized ";
break;
case 5:
kernel = &transposeCoarseGrained;
kernelName = "coarse-grained ";
break;
case 6:
kernel = &transposeFineGrained;
kernelName = "fine-grained ";
break;
case 7:
kernel = &transposeDiagonal;
kernelName = "diagonal ";
break;
}
// set reference solution
if (kernel == © || kernel == ©SharedMem) {
gold = h_idata;
} else if (kernel == &transposeCoarseGrained ||
kernel == &transposeFineGrained) {
gold = h_odata; // fine- and coarse-grained kernels are not full
// transposes, so bypass check
} else {
gold = transposeGold;
}
// Clear error status
checkCudaErrors(cudaGetLastError());
// warmup to avoid timing startup
kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y);
// take measurements for loop over kernel launches
checkCudaErrors(cudaEventRecord(start, 0));
for (int i = 0; i < NUM_REPS; i++) {
kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y);
// Ensure no launch failure
checkCudaErrors(cudaGetLastError());
}
checkCudaErrors(cudaEventRecord(stop, 0));
checkCudaErrors(cudaEventSynchronize(stop));
float kernelTime;
checkCudaErrors(cudaEventElapsedTime(&kernelTime, start, stop));
checkCudaErrors(
cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost));
bool res = compareData(gold, h_odata, size_x * size_y, 0.01f, 0.0f);
if (res == false) {
printf("*** %s kernel FAILED ***\n", kernelName);
success = false;
}
// take measurements for loop inside kernel
checkCudaErrors(
cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost));
res = compareData(gold, h_odata, size_x * size_y, 0.01f, 0.0f);
if (res == false) {
printf("*** %s kernel FAILED ***\n", kernelName);
success = false;
}
// report effective bandwidths
float kernelBandwidth = 2.0f * 1000.0f * mem_size / (1024 * 1024 * 1024) /
(kernelTime / NUM_REPS);
printf(
"transpose %s, Throughput = %.4f GB/s, Time = %.5f ms, Size = %u fp32 "
"elements, NumDevsUsed = %u, Workgroup = %u\n",
kernelName, kernelBandwidth, kernelTime / NUM_REPS, (size_x * size_y),
1, TILE_DIM * BLOCK_ROWS);
}
// cleanup
free(h_idata);
free(h_odata);
free(transposeGold);
cudaFree(d_idata);
cudaFree(d_odata);
checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));
if (!success) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
printf("Test passed\n");
exit(EXIT_SUCCESS);
}