forked from GoogleCloudPlatform/cluster-toolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgke-managed-hyperdisk.yaml
225 lines (215 loc) · 8.03 KB
/
gke-managed-hyperdisk.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
---
blueprint_name: gke-managed-hyperdisk
vars:
project_id: ## Set GCP Project ID Here ##
deployment_name: gke-managed-hyperdisk
region: us-central1
zone: us-central1-c
# Cidr block containing the IP of the machine calling terraform.
# The following line must be updated for this example to work.
authorized_cidr: <your-ip-address>/32
deployment_groups:
- group: primary
modules:
- id: network
source: modules/network/vpc
settings:
subnetwork_name: gke-subnet-hyperdisk
secondary_ranges:
gke-subnet-hyperdisk:
- range_name: pods
ip_cidr_range: 10.4.0.0/14
- range_name: services
ip_cidr_range: 10.0.32.0/20
- id: gke_cluster
source: modules/scheduler/gke-cluster
use: [network]
settings:
release_channel: RAPID
enable_persistent_disk_csi: true # enable Hyperdisk for the cluster
configure_workload_identity_sa: true
enable_private_endpoint: false # Allows for access from authorized public IPs
master_authorized_networks:
- display_name: deployment-machine
cidr_block: $(vars.authorized_cidr)
maintenance_exclusions:
- name: no-minor-or-node-upgrades-indefinite
start_time: "2024-12-01T00:00:00Z"
end_time: "2025-12-22T00:00:00Z"
exclusion_scope: NO_MINOR_OR_NODE_UPGRADES
outputs: [instructions]
### Set up storage class and persistent volume claim for Hyperdisk ###
- id: hyperdisk-balanced-setup
source: modules/file-system/gke-storage
use: [gke_cluster]
settings:
storage_type: Hyperdisk-balanced
access_mode: ReadWriteOnce
sc_volume_binding_mode: Immediate
sc_reclaim_policy: Delete
sc_topology_zones: [$(vars.zone)]
pvc_count: 1
capacity_gb: 100
- id: hyperdisk-throughput-setup
source: modules/file-system/gke-storage
use: [gke_cluster]
settings:
storage_type: Hyperdisk-throughput
access_mode: ReadWriteOnce
sc_volume_binding_mode: Immediate
sc_reclaim_policy: Delete
sc_topology_zones: [$(vars.zone)]
pvc_count: 1
capacity_gb: 5000
- id: hyperdisk-extreme-setup
source: modules/file-system/gke-storage
use: [gke_cluster]
settings:
storage_type: Hyperdisk-extreme
access_mode: ReadWriteOnce
sc_volume_binding_mode: Immediate
sc_reclaim_policy: Delete
sc_topology_zones: [$(vars.zone)]
pvc_count: 1
capacity_gb: 100
- id: sample-pool
source: modules/compute/gke-node-pool
use: [gke_cluster]
settings:
name: sample-pool
zones: [$(vars.zone)]
machine_type: c3-standard-88 # Hyperdisk-extreme required C3 machine with 88 or more vCPUs
auto_upgrade: true
# Train a TensorFlow model with Keras and Hyperdisk Balanced on GKE
# Tutorial: https://cloud.google.com/parallelstore/docs/tensorflow-sample
- id: hyperdisk-balanced-job
source: modules/compute/gke-job-template
use:
- gke_cluster
- hyperdisk-balanced-setup
settings:
name: tensorflow
image: jupyter/tensorflow-notebook@sha256:173f124f638efe870bb2b535e01a76a80a95217e66ed00751058c51c09d6d85d
security_context: # to make sure the job have enough access to execute the jobs and r/w from hyperdisk
- key: runAsUser
value: 1000
- key: runAsGroup
value: 100
- key: fsGroup
value: 100
command:
- bash
- -c
- |
pip install transformers datasets
python - <<EOF
from datasets import load_dataset
dataset = load_dataset("glue", "cola", cache_dir='/data/hyperdisk-balanced-pvc-0')
dataset = dataset["train"]
from transformers import AutoTokenizer
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
tokenized_data = dict(tokenized_data)
labels = np.array(dataset["label"])
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
model.compile(optimizer=Adam(3e-5))
model.fit(tokenized_data, labels)
EOF
node_count: 1
outputs: [instructions]
# Train a TensorFlow model with Keras and Hyperdisk Extreme on GKE
# Tutorial: https://cloud.google.com/parallelstore/docs/tensorflow-sample
- id: hyperdisk-extreme-job
source: modules/compute/gke-job-template
use:
- gke_cluster
- hyperdisk-extreme-setup
settings:
name: tensorflow
image: jupyter/tensorflow-notebook@sha256:173f124f638efe870bb2b535e01a76a80a95217e66ed00751058c51c09d6d85d
security_context: # to make sure the job have enough access to execute the jobs and r/w from hyperdisk
- key: runAsUser
value: 1000
- key: runAsGroup
value: 100
- key: fsGroup
value: 100
command:
- bash
- -c
- |
pip install transformers datasets
python - <<EOF
from datasets import load_dataset
dataset = load_dataset("glue", "cola", cache_dir='/data/hyperdisk-extreme-pvc-0')
dataset = dataset["train"]
from transformers import AutoTokenizer
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
tokenized_data = dict(tokenized_data)
labels = np.array(dataset["label"])
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
model.compile(optimizer=Adam(3e-5))
model.fit(tokenized_data, labels)
EOF
node_count: 1
outputs: [instructions]
# Train a TensorFlow model with Keras and Hyperdisk Throughput on GKE
# Tutorial: https://cloud.google.com/parallelstore/docs/tensorflow-sample
- id: hyperdisk-throughput-job
source: modules/compute/gke-job-template
use:
- gke_cluster
- hyperdisk-throughput-setup
settings:
name: tensorflow
image: jupyter/tensorflow-notebook@sha256:173f124f638efe870bb2b535e01a76a80a95217e66ed00751058c51c09d6d85d
security_context: # to make sure the job have enough access to execute the jobs and r/w from hyperdisk
- key: runAsUser
value: 1000
- key: runAsGroup
value: 100
- key: fsGroup
value: 100
command:
- bash
- -c
- |
pip install transformers datasets
python - <<EOF
from datasets import load_dataset
dataset = load_dataset("glue", "cola", cache_dir='/data/hyperdisk-throughput-pvc-0')
dataset = dataset["train"]
from transformers import AutoTokenizer
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
tokenized_data = dict(tokenized_data)
labels = np.array(dataset["label"])
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
model.compile(optimizer=Adam(3e-5))
model.fit(tokenized_data, labels)
EOF
node_count: 1
outputs: [instructions]