-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate.pyx
506 lines (474 loc) · 14.1 KB
/
update.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
from __future__ import print_function
import numpy as np
cimport numpy as cnp
#from numpy.math cimport INFINITY
#from libc.math cimport abs as cabs
#from cython.view cimport array as cvarray
#from libc.stdlib cimport abort, malloc, free
#cimport cython.parallel as cpar
cimport cython
from libc.math cimport sqrt
from libcpp cimport bool
from libc.stdio cimport printf
from libcpp.vector cimport vector
from libcpp.algorithm cimport sort as stdsort
# distutils: language = c
# cython: cdivision = True
# cython: boundscheck = False
# cython: wraparound = False
# cython: profile = False
from libc.stdlib cimport malloc, free
cdef extern from "stdlib.h":
ctypedef void const_void "const void"
void qsort(void *base, int nmemb, int size,
int(*compar)(const_void *, const_void *)) nogil
cdef struct IndexedElement:
cnp.ulong_t index
cnp.float64_t value
@cython.boundscheck(False)
@cython.wraparound(False)
cdef int _compare(const_void *a, const_void *b) nogil:
cdef cnp.float64_t v = (<IndexedElement*> a).value-(<IndexedElement*> b).value
if v < 0: return -1
if v >= 0: return 1
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void argsort(vector[double] data, int* order, int n) nogil:
cdef cnp.ulong_t i
# Allocate index tracking array.
cdef IndexedElement *order_struct = <IndexedElement *> malloc(n * sizeof(IndexedElement))
# Copy data into index tracking array.
for i in range(n):
order_struct[i].index = i
order_struct[i].value = data[i]
# Sort index tracking array.
qsort(<void *> order_struct, n, sizeof(IndexedElement), _compare)
# Copy indices from index tracking array to output array.
for i in range(n):
order[i] = order_struct[i].index
# Free index tracking array.
free(order_struct)
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline double cabs(double x) nogil:
if(x < 0.0):
return -x
return x
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline int cimax(int x, int y) nogil:
if(x > y):
return x
return y
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline double cfmax(double x, double y) nogil:
if(x > y):
return x
return y
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline int cimin(int x, int y) nogil:
if(x < y):
return x
return y
cdef inline bool less(double x, double y):
return x < y
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef void update_curve(
double[::1] tf,
double w,
double[:,::1] X,
double[::1] E,
double[:,::1] f,
double[::1] tp,
double[:,::1] p,
cnp.intp_t j,
double scale,
double maxstep,
double[:] ret) nogil:
cdef double tfshape = tf.shape[0]
cdef int n_dims = f.shape[1]
cdef int keep = (int)(tfshape*w)
if(keep < 1):
keep = 1
cdef bint left = False
cdef bint right = False
cdef double dl = 0.0
cdef double dr = 0.0
# idx = [j]
cdef cnp.intp_t i = 0, k
cdef int kept = 0
# print()
if(j == tf.shape[0]-1):
right = True
if(j == 0):
left = True
# cdef vector[double] nbp
# cdef vector[double] nbw
cdef vector[double] nbl
cdef double D = 0.0
cdef cnp.intp_t mini = i
cdef cnp.intp_t maxi = i
cdef cnp.intp_t ji
cdef double L = 0.0
cdef double norm = 0.0
cdef double weight = 0.0
cdef double step = 0.0
cdef double offset = 0.0
cdef cnp.intp_t jj = j
ret[:] = 0.0
ret[0] = j
cdef double reft = tp[j]
# need to set j to the closest index tf to tp[j]
# binary search to find closest index
cdef cnp.intp_t bi, bmini, bmaxi
bmini = 0
bmaxi = tf.shape[0]
while bmini != bmaxi:
bi = (bmaxi + bmini) / 2
if(bmaxi - bmini == 1):
if(2*tf[bi] < tf[bmini]+tf[bmaxi]):
bi = bmini
else:
bi = bmaxi
break
if(tf[bi] < reft):
bmini = bi
elif(tf[bi] > reft):
bmaxi = bi
else:
offset = bi - j
j = bi
break
while(not (left and right)):
ji = j + i
l = cabs(reft - tf[ji])
L = 0.0
#printf("l is %f\n", l)
if(l > 0.0):
if (i >= 0):
if(kept >= keep):
right = True
i = -i - 1
#printf("j=%d right=True\n", jj)
continue
dr += l
L = dr
else:
if(kept >= keep):
left = True
i = -i
#printf("j=%d left=True\n", jj)
continue
dl += l
L = dl
#printf("j=%d dl=%f dr=%f L=%f\n",jj,dl,dr,L)
D = cfmax(L,D)
kept += 1
nbl.push_back(L)
#printf("j=%d pushed %f, D=%f\n", jj, L, D)
mini = cimin(mini,i)
maxi = cimax(maxi,i)
if (left == True):
i += 1
if(j+i == tf.shape[0]):
right = True
elif (right == True):
i -= 1
if(j+i < 0):
left = True
else:
if(ji == tf.shape[0]-1):
right = True
elif(ji == 0):
left = True
if (i >= 0):
i = -i - 1
else:
i = -i
#printf("j=%d D= %f\n",jj,D)
if(D > 0.0):
for i in range(j+mini,j+maxi+1):
weight = nbl[i-(j+mini)]/D
weight = 1.0 - weight * weight * weight
weight = weight * weight * weight
weight = weight * E[i]
#printf("j=%d i=%d E= %f weight= %f\n", jj, i, E[i], weight)
nbl[i-(j+mini)] = weight
else:
# All points collected project exactly on this point -> regular average
for i in range(j+mini,j+maxi+1):
weight = E[i]
nbl[i-(j+mini)] = weight
norm = 0.0
#stdsort(nbl.begin(), nbl.end(), less)
# need to argsort nbl, then argsort X
cdef int* order = <int*>malloc(nbl.size()*sizeof(int))
argsort(nbl, order, nbl.size())
for i in range(nbl.size()):
norm += nbl[order[i]]
#printf("j=%d NORM= %f\n",jj,norm)
for i in range(nbl.size()):
for k in range(n_dims):
ret[k+1] += (X[j+mini + order[i]][k] * nbl[order[i]])/norm
#printf("j=%d k=%d adding= %f\n",jj, k, (X[j+mini + order[i]][k] * nbl[order[i]])/norm)
free(order)
#printf("j=%d NPT= %f %f %f\n",jj,ret[1], ret[2], ret[3])
#for i in range(nbl.size()):
# norm += nbl[i]
#
#for i in range(j+mini,j+maxi+1):
# for k in range(3):
# ret[k+1] += (X[i][k] * nbl[i-j-mini])/norm
step = 0.0
norm = 0.0
for k in range(n_dims):
step = (ret[k+1] - p[jj][k]) # changed p to f
norm += step * step
norm = scale*sqrt(norm) ## this is the distance between pts
if(norm > maxstep):
scale = maxstep/norm
# scale *= scale
for k in range(n_dims):
ret[k+1] = p[jj][k] + scale*(ret[k+1] - p[jj][k])
#printf("j=%d PT= %f %f %f\n",jj,ret[1], ret[2], ret[3])
#@cython.boundscheck(False)
#@cython.wraparound(False)
#cdef void update_curve_old(
# double[::1] tf,
# double w,
# double[:,::1] X,
# double[::1] E,
# double[:,::1] f,
# double[::1] tp,
# double[:,::1] p,
# cnp.intp_t j,
# double scale,
# double maxstep,
# double[:] ret) nogil:
# cdef double tfshape = tf.shape[0]
# cdef int keep = (int)(tfshape*w)
# if(keep < 1):
# keep = 1
# cdef bint left = False
# cdef bint right = False
# cdef double dl = 0.0
# cdef double dr = 0.0
## idx = [j]
# cdef cnp.intp_t i = 0, k
# cdef int kept = 0
## print()
# if(j == tf.shape[0]-1):
# right = True
# if(j == 0):
# left = True
## cdef vector[double] nbp
## cdef vector[double] nbw
# cdef vector[double] nbl
# cdef vector[double] nbl_dis
# cdef double D = 0.0
# cdef cnp.intp_t mini = i
# cdef cnp.intp_t maxi = i
# cdef cnp.intp_t ji
# cdef double L = 0
# cdef double norm = 0.0
# cdef double weight = 0.0
# cdef double step = 0.0
# ret[0] = j
# ret[1] = 0.0
# ret[2] = 0.0
# ret[3] = 0.0
# while(not (left and right)):
# ji = j + i
# l = cabs(tf[j] - tf[ji])
# L = 0.0
# if(l > 0.0):
# if (i >= 0):
# if(kept >= keep):
# right = True
# i = -i - 1
# continue
# dr += l
# L = dr
# else:
# if(kept >= keep):
# left = True
# i = -i
# continue
# dl += l
# L = dl
# D = cfmax(L,D)
# kept += 1
# nbl.push_back(L)
#
# mini = cimin(mini,i)
# maxi = cimax(maxi,i)
#
# if (left == True):
# i += 1
# if(j+i == tf.shape[0]):
# right = True
# elif (right == True):
# i -= 1
# if(j+i < 0):
# left = True
# else:
# if(ji == tf.shape[0]-1):
# right = True
# elif(ji == 0):
# left = True
# if (i >= 0):
# i = -i - 1
# else:
# i = -i
#
# if(D > 0.0):
# for i in range(j+mini,j+maxi+1):
# weight = nbl[i-(j+mini)]/D
# weight = 1.0 - weight * weight * weight
# weight = weight * weight * weight
# weight = weight * E[i]
# nbl[i-(j+mini)] = weight
# else:
# # All points collected project exactly on this point -> regular average
# for i in range(j+mini,j+maxi+1):
# weight = E[i]
# nbl[i-(j+mini)] = weight
#
# stdsort(nbl.begin(), nbl.end(), less)
# for i in range(nbl.size()):
# norm += nbl[i]
#
# for i in range(j+mini,j+maxi+1):
# for k in range(3):
# ret[k+1] += (X[i][k] * nbl[i-j-mini])/norm
#
# step = 0.0
# norm = 0.0
# for k in range(3):
# step = (ret[k+1] - f[j][k])
# norm += step * step
# norm = sqrt(norm) ## this is the distance between pts
# if(scale*norm > maxstep):
# scale = maxstep/norm
## scale *= scale
# for k in range(3):
# ret[k+1] = f[j][k] + scale*(ret[k+1] - f[j][k])
@cython.boundscheck(False)
@cython.wraparound(False)
def start(tf,f,X,E, double [::1] tp, double[:,::1] p,w,ID,scale=1.0,maxstep=1.0,chunk=1):
#l,L,x,y,z = np.array((5,),np.float64)
# ret = np.zeros((6,),np.float64)
cdef double[::1] ctf = tf
cdef double[:,::1] cf = f
cdef double[:,::1] cX = X
cdef double[::1] cE = E
cdef int cID = ID
cdef int C
cdef int c
cdef int n_dims
cdef double cw = w
cdef double cmaxstep = maxstep
cdef double cscale = scale
cdef n_samples = tf.shape[0]
cdef float IDf
if(ID + chunk >= n_samples):
chunk = n_samples - ID
C = chunk
if(ID + chunk + 1 > n_samples):
IDf = 100.0
else:
IDf = (ID + chunk + 1)/n_samples*100.0
n_dims = X.shape[1]
ret = np.zeros((chunk,n_dims+1),np.float64)
cdef double[:,:] cret = ret
with nogil:
for c in range(C):
update_curve(ctf,cw,cX,cE,cf,tp,p,cID+c,cscale,cmaxstep,cret[c])
# printf("\rExpectation %10d % 7.3f %% ", cID + c + 1,IDf)
# print("\r" + "Project {:10d} {: 7.3f} % ".format(
# ID, float(ID)/X.shape[0]*100) ,end="")
# ret[:] = cret
return ret
# GET TO WORK
#def rescale(f,N=None,targetL=None,freezeends=False):
# if (targetL is None):
# targetL = curveEuc(f,0,f.shape[0])
# if (N is None):
# N = f.shape[0]
# el = targetL/(N-1)
# # redistribute points along path to unit speed (evenly spaced)
#
# infoprint("\rReparameterizing curve... ",end="")
# f1 = f.copy()
# pt=f[0]
# j=1
# f = np.empty([N] + list(f.shape[1:]),dtype=np.float64)
# end = f.shape[0]
# f[0] = f1[0]
# if(freezeends):
# end -= 1
# f[-1] = f1[-1]
# for i in range(1,end):
# l = 0
# k = 0
# w = 1.0
# while(j < f.shape[0]):
# k = euc(pt,f1[j])
# if(l+k > el):
# break
# l += k
# pt = f1[j]
# j += 1
# if(j == f.shape[0]):
# j = f.shape[0] - 1
# if(k == 0):
# w = 1.0
# else:
# w = (el-l)/k
## print("point",i,"go between",j-1,j,"w,l+k,el=",w,l+k,el)
## if(el - l > k):
## w = 1.0
## else:
## f[i] = f[i] + scale * ((f[j-1] + w * (f[j] - f[j-1])) - f[i])
## w = scale
### norm = euc(f[j-1],f2[j])
## d = f1[j-1] + w * (f1[j] - f1[j-1])
## norm = euc(f[j-1],d)
## w = 1.0
## if(norm > maxstep):
## w = maxstep/norm
## w = w*w
## f[i] = f[i] + w * d
# pt = pt + w * (f1[j] - pt)
# f[i] = pt
#
# return f
#
# need to make this for each element
# looks like we need to sync after each loop -> while loop in python
#
#def clip(f,freezeends=False):
# clipped = True
# it = 0
# f0 = f.copy()
# while(clipped == True and it < 100):
# clipped = False
# it += 1
# for i in range(1,f.shape[0]-2):
# a = euc(f[i-1],f[i ])
# if(a == 0.0):
# continue
# p = ((f[i] - f[i-1]) * (f[i+1] - f[i-1])).sum() / a
# if(p < a):
# f0[i] = (f[i-1] + f[i+1]) / 2.0
# clipped = True
# targetL = curveEuc(f0, 0, f0.shape[0])
# p = rescale(f0, N=None, targetL=targetL, freezeends=freezeends)
# p2 = rescale(f0[::-1], N=None, targetL=targetL, freezeends=freezeends)
# f0 = (p + p2[::-1])/2.0
# f = f0.copy()
# return f