-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
62 lines (51 loc) · 1.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import numpy as np
import matplotlib.pyplot as plt
from torchvision.models import resnet18
import torch.nn as nn
import cv2
def visualize(model, image):
#preprocess image
if not torch.is_tensor(image):
image = image[:, :, ::-1].transpose(2, 0, 1)
image = np.ascontiguousarray(np.array(image))
image = torch.from_numpy(image).float()
if len(image.shape) == 3:
image = image.unsqueeze(0)
#feeding to network
counter = 0
model_list = list(model.children())
model_weights = []
convs_layers = []
for i in range(len(model_list)):
if type(model_list[i]) == nn.Conv2d:
counter += 1
model_weights.append(model_list[i].weight)
convs_layers.append(model_list[i])
elif type(model_list[i]) == nn.Sequential:
for j in range(len(model_list[i])):
for child in model_list[i][j].children():
if type(child) == nn.Conv2d:
counter += 1
model_weights.append(child.weight)
convs_layers.append(child)
print('Total convolutional layers: {}'.format(counter))
outputs = [convs_layers[0](image)]
for i in range(1, len(convs_layers)):
outputs.append(convs_layers[i](outputs[-1]))
for num_layer in range(len(outputs)):
plt.figure(figsize=(30, 30))
layer_viz = outputs[num_layer][0, :, :, :]
layer_viz = layer_viz.data
print(layer_viz.size())
for i, filter in enumerate(layer_viz):
if i == 64: # we will visualize only 8x8 blocks from each layer
break
plt.subplot(8, 8, i + 1)
plt.imshow(filter, cmap='gray')
plt.axis("off")
plt.show()
if __name__ == '__main__':
image = cv2.imread(r'F:\data\FSC147_384_V2\test\7521.jpg')
model = resnet18(pretrained=True)
visualize(model, image)