-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
166 lines (103 loc) · 4.71 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from sklearn.model_selection import train_test_split
import h5py
from keras.callbacks import ModelCheckpoint, CSVLogger
import sys
sys.path.insert(0, './scripts/')
from create_dataset import *
# ### Train the deep learning model
input_img = Input(shape=(300, 300, 3)) #
x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img) #nb_filter, nb_row, nb_col
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
encoded = MaxPooling2D((2, 2), border_mode='same')(x)
print ("shape of encoded", K.int_shape(encoded))
#==============================================================================
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, 3, 3, activation='relu', border_mode='valid')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, 5, 5, activation='sigmoid', border_mode='same')(x)
print ("shape of decoded", K.int_shape(decoded))
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
#===============================================================
# Reading the DAY HDF files
#===============================================================
# original scene image
h5f = h5py.File('./data/day_images/day_scene_withAUG.h5','r')
original_sceneimage = h5f['sceneimage'][:]
h5f.close()
print ("original scene hdf5 file's shape", original_sceneimage.shape)
# original ground truth image
h5f = h5py.File('./data/day_images/day_withAUG_GT.h5','r')
original_GTmasks = h5f['GTmasks'][:]
h5f.close()
print ("original ground truth hdf5 file's shape", original_GTmasks.shape)
original_GTmasks = original_GTmasks.astype('float32')/255.
gt_data = original_GTmasks
(no_of_dayimages, _, _, _) = original_sceneimage.shape
print (no_of_dayimages)
scene_data = original_sceneimage
# -------------------------------------
# Reading the NIGHT HDF files
# original scene image
#h5f = h5py.File('./data/night_images/night_scene_withAUG.h5','r')
#original_sceneimage_night = h5f['sceneimage'][:]
#h5f.close()
#print ("original scene hdf5 file's shape", original_sceneimage_night.shape)
# original ground truth image
#h5f = h5py.File('./data/night_images/night_withAUG_GT.h5','r')
#original_GTmasks_night = h5f['GTmasks'][:]
#h5f.close()
#print ("original ground truth hdf5 file's shape", original_GTmasks_night.shape)
#original_GTmasks_night = original_GTmasks_night.astype('float32')/255.
#(no_of_nightimages, _, _, _) = original_sceneimage_night.shape
#print (no_of_nightimages)
# Combining both day and night images in a single tensor
#scene_data = np.vstack([original_sceneimage,original_sceneimage_night])
#print (scene_data.shape)
#gt_data = np.vstack([original_GTmasks,original_GTmasks_night])
#print (gt_data.shape)
#===============================================================
# Creating the dataset for training our model
#===============================================================
(number_of_original, _, _, _) = original_sceneimage.shape
a = np.arange(number_of_original)
index_of_training = a[:number_of_original]
index_of_testing = a[:number_of_original]
X_train = scene_data[index_of_training]
Y_train = gt_data[index_of_training]
X_testing = scene_data[index_of_testing]
Y_testing = gt_data[index_of_testing]
print (X_train.shape)
print (X_testing.shape)
print (Y_train.shape)
print (Y_testing.shape)
# Saving the testing images and ground truths (as they are always randomized)
np.save('./results/withAUG_dataset/xtesting.npy', X_testing)
np.save('./results/withAUG_dataset/ytesting.npy', Y_testing)
data = np.load('./results/withAUG_dataset/xtesting.npy')
print ('from the saved data')
print (data.shape)
#===============================================================
# Model training
#===============================================================
csv_logger = CSVLogger('./results/withAUG_dataset/logfile.txt')
'''
saves the model weights after each epoch if the validation loss decreased
'''
checkpointer = ModelCheckpoint(filepath='./results/withAUG_dataset/cloudsegnet.hdf5', verbose=1, save_best_only=True)
autoencoder.fit(X_train, Y_train, epochs=50000, batch_size=32,
validation_data=(X_testing, Y_testing), verbose=1,callbacks=[csv_logger, checkpointer])