-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathtweet.py
306 lines (278 loc) · 11.1 KB
/
tweet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import datetime
import hashlib
import json
import os
import re
from collections import defaultdict
from decimal import Decimal
from pathlib import Path
from string import Template
import gspread
import rows
from oauth2client.service_account import ServiceAccountCredentials
from rows.utils import open_compressed
from tqdm import tqdm
REGEXP_DATE_1 = re.compile("^([0-9]{1,2})/([0-9]{1,2})/([0-9]{4})")
REGEXP_DATE_2 = re.compile("^([0-9]{4})-([0-9]{2})-([0-9]{2})")
class COVID19Spreadsheet:
def __init__(self, credentials_filename, spreadsheet_id):
with open(credentials_filename) as fobj:
credentials = json.load(fobj)
self.account = ServiceAccountCredentials.from_json_keyfile_dict(credentials)
self.client = gspread.authorize(self.account)
self.spreadsheet = self.client.open_by_key(spreadsheet_id)
@property
def state_data(self):
records = self.spreadsheet.worksheet("Sheet1").get_all_records()
for row in records:
date = row["data_boletim"]
if REGEXP_DATE_1.match(date):
day, month, year = REGEXP_DATE_1.findall(date)[0]
date = f"{int(year)}-{int(month):02d}-{int(day):02d}"
elif REGEXP_DATE_2.match(date):
year, month, day = REGEXP_DATE_2.findall(date)[0]
date = f"{int(year)}-{int(month):02d}-{int(day):02d}"
row["data_boletim"] = date
return records
@property
def diff_states(self):
header = [
"today_date",
"today_state",
"today_data_dados",
"today_confirmed",
"today_deaths",
"today_vaccination",
"empty_1",
"yesterday_state",
"yesterday_date",
"yesterday_data_dados",
"yesterday_confirmed",
"yesterday_deaths",
"yesterday_vaccination",
"empty_2",
"novos_casos",
"novos_casos_percent",
"novas_mortes",
"novas_mortes_percent",
"novos_vacinados",
"novos_vacinados_percent",
"diff_dias",
]
result = []
for row in self.spreadsheet.worksheet("diff_states").get("B4:V30"):
row = dict(zip(header, row))
for key, value in row.items():
if "_percent" in key:
row[key] = rows.fields.PercentField.deserialize(
value.replace(",", ".")
)
elif key.endswith("_date") or "_data_" in key:
row[key] = rows.fields.DateField.deserialize(value)
elif (
"_confirmed" in key
or "_deaths" in key
or "vaccination" in key
or "novos_" in key
or "novas_" in key
or key == "diff_dias"
):
row[key] = int(value) if value else None
result.append(row)
return result
def format_number_br(n):
"""
>>> format_number_br(123)
'123'
>>> format_number_br(1234)
'1.234'
>>> format_number_br(1234.56)
'1.234,56'
>>> format_number_br(123456789.01)
'123.456.789,01'
"""
return f"{n:,}".replace(",", "X").replace(".", ",").replace("X", ".")
def abbreviate_number(n, divider=1_000, suffix=None):
"""
>>> abbreviate_number(100)
'100'
>>> abbreviate_number(1_000)
'1.0K'
>>> abbreviate_number(1_000, divider=1_024)
'1000'
>>> abbreviate_number(1_024, divider=1_024)
'1.0K'
>>> abbreviate_number(1_024, divider=1_024, suffix="iB")
'1.0KiB'
>>> abbreviate_number(1_500)
'1.5K'
>>> abbreviate_number(10_000)
'10.0K'
>>> abbreviate_number(1_000_000)
'1.0M'
>>> abbreviate_number(1_234_000_000)
'1.2G'
>>> abbreviate_number(1_234_567_890_000)
'1.2T'
>>> abbreviate_number(1_234_567_890_000_123)
'1.2P'
"""
suffix = suffix if suffix is not None else ""
multipliers = ["K", "M", "G", "T", "P"]
multiplier = ""
while n >= divider:
n /= divider
multiplier = multipliers.pop(0)
if not multiplier:
return str(n) + suffix
else:
return f"{n:.1f}{multiplier}" + suffix
def file_metadata(filename, chunk_size=8 * 1024 * 1024):
hasher = hashlib.sha1()
with open(filename, mode="rb") as fobj, tqdm(unit_scale=True, unit="B") as progress:
finished = False
while not finished:
data = fobj.read(chunk_size)
hasher.update(data)
chunk_length = len(data)
finished = chunk_length == 0
progress.update(chunk_length)
total_bytes = progress.n
new_lines = 0
with open_compressed(filename, mode="rb") as fobj, tqdm(
unit_scale=True, unit="B"
) as progress:
finished = False
finish_with_new_line = False
while not finished:
data = fobj.read(chunk_size)
new_lines += data.count(b"\n")
chunk_length = len(data)
finished = chunk_length == 0
if not finished:
finish_with_new_line = data[-1] == b"\n"
progress.update(chunk_length)
uncompressed_bytes = progress.n
if not finish_with_new_line:
new_lines += 1
return hasher.hexdigest(), new_lines, total_bytes, uncompressed_bytes
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("tweet_type", choices=["boletim", "vacinacao"])
args = parser.parse_args()
if args.tweet_type == "boletim":
credentials_filename = "credentials/credentials-brasil-io-covid19.json"
spreadsheet_id = os.environ["BULLETIN_SPREADSHEET_ID"]
spreadsheet = COVID19Spreadsheet(credentials_filename, spreadsheet_id)
start_date = datetime.date(2020, 6, 6)
today = datetime.datetime.now().date()
number = (today - start_date).days + 1
state_data = spreadsheet.state_data
total_confirmed = sum(row["confirmed"] for row in state_data)
total_deaths = sum(row["deaths"] for row in state_data)
all_bulletins_published_today = set(
row["data_boletim"] for row in state_data
) == {str(today)}
if all_bulletins_published_today:
missing_bulletins_text = [
"* Hoje todas as secretarias estaduais publicaram boletins! o/",
]
else:
missing_bulletins = [
state
for state in state_data
if state["data_boletim"] != str(today) or (state["MS"] or "").strip()
]
missing_state_data = defaultdict(list)
for state in missing_bulletins:
ms = (state["MS"] or "").strip().lower()
if ms == "sim":
status = "dados do @minsaude"
elif ms == "parcial":
status = "atualização parcial"
else:
last_date = datetime.datetime.strptime(
state["data_boletim"], "%Y-%m-%d"
).strftime("%d/%m")
status = f"sem dados hoje (último: {last_date})"
missing_state_data[status].append(state["state"])
total_missing = sum([len(item) for item in missing_state_data.values()])
missing_bulletins_text = [
f"* Nem todos os estados liberaram boletins hoje, falta{'m' if total_missing > 1 else ''}:"
]
missing_bulletins_text.extend(
[
f"- {', '.join(states)}: {status}"
for status, states in missing_state_data.items()
]
)
diff_states = spreadsheet.diff_states
new_confirmed = sum(row["novos_casos"] for row in diff_states)
new_deaths = sum(row["novas_mortes"] for row in diff_states)
top_increase_deaths = []
diff_states.sort(key=lambda row: row["novas_mortes_percent"], reverse=True)
for state in diff_states[:5]:
state_new_deaths = format_number_br(state["novas_mortes"])
state_new_deaths_percent = (state["novas_mortes_percent"] * 100).quantize(
Decimal("0.01")
)
line = f"- {state['today_state']}: +{state_new_deaths.rjust(3)} ({format_number_br(state_new_deaths_percent)}%)"
if state["diff_dias"] > 1:
line += f" -- dif. p/ {state['diff_dias']} dias"
top_increase_deaths.append(line)
top_increase_confirmed = []
diff_states.sort(key=lambda row: row["novos_casos_percent"], reverse=True)
for state in diff_states[:5]:
state_new_confirmed_percent = (state["novos_casos_percent"] * 100).quantize(
Decimal("0.01")
)
line = f"- {state['today_state']}: +{format_number_br(state_new_confirmed_percent)}%"
if state["diff_dias"] > 1:
line += f" -- dif. p/ {state['diff_dias']} dias"
top_increase_confirmed.append(line)
context = {
"number": number,
"date": f"{today.day:02d}/{today.month:02d}",
"total_confirmed": format_number_br(total_confirmed),
"new_confirmed": format_number_br(new_confirmed),
"total_deaths": format_number_br(total_deaths),
"new_deaths": format_number_br(new_deaths),
"top_increase_deaths": "\n".join(top_increase_deaths),
"top_increase_confirmed": "\n".join(top_increase_confirmed),
"missing_bulletins": "\n".join(missing_bulletins_text),
}
context_smaller = context.copy()
context_smaller.update(
{
"top_increase_deaths": "\n".join(top_increase_deaths[:3]),
"top_increase_confirmed": "\n".join(top_increase_confirmed[:3]),
"missing_bulletins": "\n".join(missing_bulletins_text),
}
)
path = Path(__file__).parent / "templates"
result = []
for filename in sorted(path.glob("boletim-*.txt")):
with filename.open() as fobj:
template = Template(fobj.read())
text = template.substitute(context).strip()
if len(text) > 280:
text = template.substitute(context_smaller).strip()
result.append(text)
print("<pre>\n" + "\n---\n".join(result) + "\n</pre>")
elif args.tweet_type == "vacinacao":
filename = "data/output/microdados_vacinacao.csv.gz"
sha1, lines, total_bytes, uncompressed_bytes = file_metadata(filename)
file_size = abbreviate_number(total_bytes, suffix="B")
url = "https://data.brasil.io/dataset/covid19/microdados_vacinacao.csv.gz"
print(
"<pre>\n"
"🎲 Acabamos de atualizar o CSV com microdados de vacinados, "
f"agora com {format_number_br(lines - 1)} registros! "
f"Baixe em: {url}\n"
f"({file_size}, SHA1: {sha1})\n"
f"#covid19 #OpenData"
"\n</pre>"
)
if __name__ == "__main__":
main()