Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unable to insert vector data libsql #1903

Open
dariye opened this issue Jan 4, 2025 · 1 comment
Open

Unable to insert vector data libsql #1903

dariye opened this issue Jan 4, 2025 · 1 comment

Comments

@dariye
Copy link

dariye commented Jan 4, 2025

Bug report

I'm unable to persist a vector column with embeddings. I followed the turso guide here here for defining the types And the Drizzle documentation. I've also taken inspiration from this blog post for the setup with expo.

I've open an issue here drizzle-team/drizzle-orm#3899

Expected behaviour

I can insert a vector into my sqlite database

Libs and versions

"@libsql/client": "^0.14.0"
"expo": "^52.0.23"
"expo-sqlite": "~15.0.5"
"drizzle-orm": "^0.38.3"
@op-engineering/op-sqlite": "^11.2.12

Steps

  1. Database configuration + Drizzle config
// db/index.ts

import { drizzle, OPSQLiteDatabase } from "drizzle-orm/op-sqlite";
import {
  open,
  DB
} from "@op-engineering/op-sqlite";
import { logError } from "~/lib/utils";

let db: OPSQLiteDatabase
let sqlite: DB

try { 
  sqlite = open({
    name: "meadowmind.local.db",
  });
  
  db = drizzle(sqlite);

} catch (error) {
  const updatedError = logError('Error initializing database client', error);
  throw updatedError;
}


export { db }
// drizzle.config.ts

import type { Config } from "drizzle-kit";
 
export default {
  schema: "./db/schema.ts",
  out: "./db/generated",
  dialect: "sqlite",
  driver: 'expo',
  casing: "snake_case"
} satisfies Config;
  1. Define custom vector type
const embedding = customType<{
  data: number[];
  config: { dimensions: number };
  configRequired: true;
  driverData: Buffer;
}>({
  dataType(config) {
    return `F32_BLOB(${config.dimensions})`;
  },
  fromDriver(value: Buffer) {
    return Array.from(new Float32Array(value.buffer));
  },
  toDriver(value: number[]) {
    return sql`vector32(${JSON.stringify(value)})`;
  },
});
  1. Define table with vector column
export const content = sqliteTable('content', {
  id: integer('id').primaryKey({ autoIncrement: true }),
title: text('title').notNull(),
  data: text('data', { mode: 'json'}).notNull().$type<{value: string, type: string, extension: string}>(),
  embedding: embedding('embedding', { dimensions: 512 })
});
  1. Add an index in my generated/migrations .sql file
-- Custom SQL migration file, put your code below! --
CREATE INDEX IF NOT EXISTS embedding_index
ON content(embedding)
USING vector_cosine(512)
  1. Run migration to add index
npm run db:migrate
  1. Loading migrations in my _layout.tsx
import { useMigrations } from 'drizzle-orm/op-sqlite/migrator';

const { success, error } = useMigrations(db, migrations);
  1. Insert vector data
import {content } from "../schema";

 await tx.insert(content).values([{
                title,
                data,
                embedding: sql`vector32(${JSON.stringify(embedding)})`
            }])

Observation

In the insert operation in 6) title and data are stored just alright; however, the embedding field is an empty array.

@younes200
Copy link

younes200 commented Jan 20, 2025

You don't need to use the sql vector32 operator when inserting vector data, as it is already a customType in Drizzle.

await tx.insert(content).values([{
                title,
                data,
                embedding: embedding
            }])

embedding value should be a number[] type
Make sure also that your embedding returns 512 vectors

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants