-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolution.v
57 lines (53 loc) · 1.48 KB
/
Solution.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Require Import Problem Omega.
Lemma midpoint (m n : nat) : S m < n -> m < (m + n) / 2 < n.
Proof.
intros.
split.
- apply Nat.div_le_lower_bound; omega.
- apply Nat.div_lt_upper_bound; omega.
Qed.
Lemma boundary (f : nat -> bool) : downward_closed f -> forall m, f m = true -> f (S m) = false -> forall n, f n = true <-> n <= m.
Proof.
unfold downward_closed.
intros.
split; intro.
- assert (n <= m \/ S m <= n) by omega.
destruct H3; [auto|].
rewrite (H (S m) n H3 H2) in H1.
discriminate.
- apply (H n m); auto.
Qed.
Theorem solution: task.
Proof.
unfold task.
intros f H l r.
remember (r - l) as k.
assert (r <= S k + l) by omega; clear Heqk.
revert l r H0.
induction k; intros.
- assert (S l = r) by omega.
subst r.
clear H0 H1.
exists 0.
simpl.
rewrite Nat.eqb_refl.
apply boundary; auto.
- cut (exists k0 : nat, forall n : nat, f n = true <-> n <= binsearch f l r (S k0)).
* intro; destruct H4; exists (S x); auto.
* simpl.
destruct r; [exfalso; omega|].
assert (l = r \/ l < r) by omega.
destruct H4.
+ subst r.
rewrite Nat.eqb_refl.
exists 0.
apply boundary; auto.
+ assert (l <> r) by omega.
apply Nat.eqb_neq in H5.
rewrite H5; clear H5.
fold ((l + S r) / 2).
assert (l < (l + S r) / 2 < S r) by (apply midpoint; omega).
remember (((l + S r) / 2)) as m.
remember (f m).
destruct b; apply IHk; auto; omega.
Qed.