-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensemble.py
261 lines (213 loc) · 7.73 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 29 12:21:08 2015
@author: thalita
"""
import abc
import numpy as np
from collections import Counter
from base import RatingPredictor, BaseRecommender
from scipy.stats import kendalltau
from sklearn.preprocessing.data import normalize
from sklearn.linear_model import ElasticNet
from recommender import BMFRPrecommender
from databases import HiddenRatingsDatabase
import evaluation as evalu
from utils import oneD
class BaseEnsemble(BaseRecommender):
__metaclass__ = abc.ABCMeta
@property
def RS_list(self):
"list of recommenders used by the ensemble"
return self._RS_list
@RS_list.setter
def RS_list(self, val):
self._RS_list = val
@property
def keep(self):
return self._keep
@keep.setter
def keep(self, val):
self._keep = val
@property
def diversity_measures(self):
return self._diversity_measures
@diversity_measures.setter
def diversity_measures(self, val):
self._diversity_measures = val
@abc.abstractmethod
def fit(self, split):
"learn recommender model (neighborhood, matrix factorization, etc)"
self.database = split.train
self.RS_list = filter_RS_list(self.RS_list, split, self.keep)
return self
def is_ensemble(self):
return True
def save(self, filepath):
for i, RS in enumerate(self.RS_list):
self.RS_list[i].database = None
BaseRecommender.save(self, filepath)
def load(self, filepath, database):
BaseRecommender.load(self, filepath, database)
for i, RS in enumerate(self.RS_list):
self.RS_list[i].database = database
def config(self):
d = BaseRecommender.config(self)
d.update(self.__dict__)
del d['_RS_list']
del d['_database']
return d
def filter_RS_list(RS_list, split, keep=0.25):
score = []
for RS in RS_list:
metrics = evalu.Metrics(split, RS=RS)
metrics.def_test_set('tuning')
metrics.error_metrics()
score.append(metrics.metrics['RMSE_tuning'])
score = [(s, idx) for idx, s in enumerate(score)]
score.sort()
keep = [idx for s, idx in score[:int(len(score)*keep)]]
return [RS_list[idx] for idx in keep]
class RatingEnsemble(BaseEnsemble, RatingPredictor):
__metaclass__ = abc.ABCMeta
diversity_metric = 'stddev'
@abc.abstractmethod
def _rating_ensemble_strategy(self, ratings):
pass
def predict(self, target_user, target_item):
ratings = [RS.predict(target_user, target_item) for RS in self.RS_list]
self.diversity_measures += [np.std(ratings)]
return self._rating_ensemble_strategy(ratings)
def config(self):
d = BaseEnsemble.config(self)
d['diversity_metric'] = RatingEnsemble.diversity_metric
return d
class ListEnsemble(BaseEnsemble):
__metaclass__ = abc.ABCMeta
diversity_metric = 'kendalltau'
@abc.abstractmethod
def _list_ensemble_strategy(self, rec_lists):
pass
def predict(self, target_user, target_item):
return 0
def recommend(self, target_user, how_many=np.inf, **rec_args):
recommendations = []
for RS in self.RS_list:
rec_list = RS.recommend(target_user, **rec_args)
recommendations.append(rec_list)
recommendations = [l for l in recommendations if l != []]
if recommendations == []:
return []
self.diversity_measures += [self.kendalltau(recommendations)]
lists = self._list_ensemble_strategy(recommendations)
how_many = min(how_many, len(lists))
lists = lists[:how_many]
return lists
def kendalltau(self, lists):
'''
From Scipy's doc:
Kendall’s tau is a measure of the correspondence between two rankings.
Values close to 1 indicate strong agreement,
values close to -1 indicate strong disagreement.
'''
value = 0
count = 0
lists = [l for l in lists if l != []]
trim = min([len(l) for l in lists])
for i in range(len(lists)-1):
for j in range(1, len(lists)):
a, b = lists[i][:trim], lists[j][:trim]
k, p = kendalltau(a, b)
value += k
count += 1
value /= count
return value
def config(self):
d = BaseEnsemble.config(self)
d['diversity_metric'] = ListEnsemble.diversity_metric
return d
class MajorityEnsemble(ListEnsemble):
def __init__(self, keep=1):
self.RS_list = []
self.diversity_measures = []
self.keep = keep
def _list_ensemble_strategy(self, rec_lists):
item_votes = Counter()
for rec_list in rec_lists:
item_votes.update([item_id for item_id, rating in rec_list])
return item_votes.most_common()
class RankSumEnsemble(ListEnsemble):
def __init__(self, keep=1):
self.RS_list = []
self.diversity_measures = []
self.keep = keep
def _list_ensemble_strategy(self, rec_lists):
rank_sum = Counter()
for rec_list in rec_lists:
for i, item_rating in enumerate(rec_list):
item_id, rating = item_rating
rank_sum[item_id] -= i
return rank_sum.most_common()
class AvgRatingEnsemble(RatingEnsemble):
def __init__(self, keep=1):
self.RS_list = []
self.diversity_measures = []
self.keep = keep
def _rating_ensemble_strategy(self, ratings):
return np.mean(ratings)
class WAvgRatingEnsemble(RatingEnsemble):
def __init__(self, keep=1):
self.RS_list = []
self.weights = []
self.diversity_measures = []
self.keep = keep
def _rating_ensemble_strategy(self, ratings):
ratings = np.array(ratings)
return np.dot(self.weights, ratings)
def fit(self, split):
BaseEnsemble.fit(self, split)
self.weights = []
for RS in self.RS_list:
metrics = evalu.Metrics(split, RS=RS)
metrics.def_test_set('tuning')
metrics.error_metrics()
self.weights.append(1/metrics.metrics['RMSE_tuning'])
self.weights = oneD(normalize(np.array(self.weights), norm='l1'))
class LinRegRatingEnsemble(RatingEnsemble):
def __init__(self, ens_reg=1.0, l1_ratio=0.5, keep=1):
self.diversity_measures = []
self.keep = keep
self.RS_list = []
self.ens_reg = ens_reg
self.l1_ratio = l1_ratio
'''
Elastic net performs a regularized linear regression
It has both l1 and l2 penalties:
alpha * [ (l1_ratio) * l1_penalty + (1-l1_ratio) * l2_penalty]
'''
self.model = ElasticNet(alpha=ens_reg,
l1_ratio=l1_ratio, positive=True)
def fit(self, split):
BaseEnsemble.fit(self, split)
X = []
Y = []
for user, u in split.tuning.items():
for item, rating in u:
Y.append(rating)
predictions = [RS.predict(user, item) for RS in self.RS_list]
X.append(predictions)
X = np.array(X)
Y = np.array(Y)
self.model.fit(X, Y)
def _rating_ensemble_strategy(self, ratings):
ratings = np.array(ratings, ndmin=2)
return float(self.model.predict(ratings))
def RPBMFEnsembleFactory(RP_type='sparse', n_projections=5,
dim_range=(0.25, 0.75), **BMF_args):
dim_red = np.linspace(dim_range[0], dim_range[1], n_projections)
RS_list = []
for i in range(n_projections):
RS_list.append(
BMFRPrecommender(RP_type=RP_type, dim_red=dim_red[i],
**BMF_args))
return RS_list