-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbuffer.py
56 lines (44 loc) · 1.92 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from collections import Counter
from torch import Tensor
class ReplayBuffer:
def __init__(self, capacity, obs_dims, batch_size: int): # Todo fix types
self.capacity = int(capacity)
self.entries = 0
self.batch_size = batch_size
self.obs_dims = obs_dims
self.max_obs_dim = np.max(obs_dims)
self.n_agents = len(obs_dims)
self.memory_obs = []
self.memory_nobs = []
for ii in range(self.n_agents):
self.memory_obs.append( Tensor(self.capacity, obs_dims[ii]) )
self.memory_nobs.append( Tensor(self.capacity, obs_dims[ii]) )
self.memory_acts = Tensor(self.n_agents, self.capacity)
self.memory_rwds = Tensor(self.n_agents, self.capacity)
self.memory_dones = Tensor(self.n_agents, self.capacity)
def store(self, obs, acts, rwds, nobs, dones):
store_index = self.entries % self.capacity
for ii in range(self.n_agents):
self.memory_obs[ii][store_index] = Tensor(obs[ii])
self.memory_nobs[ii][store_index] = Tensor(nobs[ii])
self.memory_acts[:,store_index] = Tensor(acts)
self.memory_rwds[:,store_index] = Tensor(rwds)
self.memory_dones[:,store_index] = Tensor(dones)
self.entries += 1
def sample(self):
if not self.ready(): return None
idxs = np.random.choice(
np.min((self.entries, self.capacity)),
size=(self.batch_size,),
replace=False, # TODO: different from jax version
)
return {
"obs": [self.memory_obs[ii][idxs] for ii in range(self.n_agents)],
"acts": self.memory_acts[:,idxs],
"rwds": self.memory_rwds[:,idxs],
"nobs": [self.memory_nobs[ii][idxs] for ii in range(self.n_agents)],
"dones": self.memory_dones[:,idxs],
}
def ready(self):
return (self.batch_size <= self.entries)