-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfileops.js
228 lines (188 loc) · 6.86 KB
/
fileops.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// ## FILEOPS.js
//
// Methods to make loading files easier
// ### loadFile(text, dataStart, xCol, yCol)
//
// Given the full-text of a file, the row number the data starts at, the column numbers
// of the x- and y-axis, parse the data and store it in the GPU. All column and row
// numbers are 0-indexed. Will clear all previously-loaded data out of the GPU.
var loadFile = function(text, dataStart, xCol, yCol, grpCol) {
dataReady = false;
// if data has been previously loaded, delete any buffers
ds.groups.forEach(function(v,i) {
v.buf.delete();
delete v.buf;
});
// Leave the old data to the garbage collector, and create new groups
// (see <http://stackoverflow.com/questions/1232040/> for discussion).
ds.groups = [];
ds.groupNames = [];
ds.groupCol = grpCol;
var delimiter = ",";
var lines = text.trim().split("\n").map(function(d) { return d.trim(); });
for (var i = 0; i < lines.length; i++) {
lines[i] = lines[i].split(delimiter);
}
ds.numCols = lines[dataStart].length;
ds.numRows = lines.length;
ds.data = [];
// Set the initial bounds.
for (var i = 0; i < 2; i++) {
bounds[i] = [Infinity, -Infinity];
}
// Parse values into arrays, splitting on unique groupBy elements.
var numGroups = 0;
for (var i = dataStart; i < ds.numRows; i++) {
// If group-by was not selected (-1), force everything into the first group.
// Otherwise, slice data by the group-by column.
var thisGroup = 0;
if (grpCol != -1) {
var thisGroupName = lines[i][ds.groupCol]
if (ds.groupNames.indexOf(thisGroupName) == -1)
ds.groupNames.push(thisGroupName);
thisGroup = ds.groupNames.indexOf(thisGroupName);
} else {
ds.groupNames = ["unnamed"];
}
if (!ds.groups[thisGroup]) {
ds.groups[thisGroup] = {};
ds.groups[thisGroup].data = [];
numGroups++;
}
// Iterate through all columns of the data, pulling out the relevant columns (xCol, yCol)
var thisRow = [];
for (var j = 0; j < ds.numCols; j++) {
if (j == xCol) {
thisRow[0] = lines[i][j];
bounds[0][0] = Math.min(lines[i][j], bounds[0][0]);
bounds[0][1] = Math.max(lines[i][j], bounds[0][1]);
}
// No `else`; user might have selected identity relation.
if (j == yCol) {
thisRow[1] = lines[i][j];
bounds[1][0] = Math.min(lines[i][j], bounds[1][0]);
bounds[1][1] = Math.max(lines[i][j], bounds[1][1]);
}
}
// add arbitrary z- coordinate to help select particular points as outliers to show
thisRow.push(Math.random());
// push to master dataset in particular group
ds.groups[thisGroup].data.push(thisRow);
}
// GL.Buffer (lightgl.js implementation) expects data in lists of lists, so
// allocate buffers for each group.
ds.groups.forEach(function(v,i) {
v.buf = new GL.Buffer(gl.ARRAY_BUFFER, Float32Array);
v.buf.data = v.data;
v.buf.compile(gl.STATIC_DRAW);
v.textures = v.textures || [];
});
// get colors for all the groups
ds.colors = getColorsNew(74, numGroups);
// construct the legend for all found groups
$("#legend-items").html("");
ds.groupNames.forEach(function(grpName, i) {
var color = ds.colors[i];
var cssColor = color.map(function(c) { return Math.round(c * 255); }).join(",");
$("#legend-items").append('\
<li>\
<div class="legend-swatch" style="background-color: rgb(' + cssColor + ');"></div> ' + grpName + '\
</li>');
});
// start constructing the kd-tree to support user queries ("what is here?")
console.time("constructing kd-tree");
var points = ds.groups.map(function(grp, i) {
return grp.data.map(function(d) {
return {
'x': +d[0],
'y': +d[1],
'grp': ds.groupNames[i]
};
});
}).reduce(function(a, b) {
return a.concat(b);
}, []);
var euclidDist = function(a,b) {
var dx = a.x - b.x;
var dy = a.y - b.y;
return dx * dx + dy * dy;
};
pointTree = new kdTree(points, euclidDist, ['x', 'y']);
console.timeEnd("constructing kd-tree");
// Set flag to allow rendering to continue.
dataReady = true;
};
// ### loadFileOld(text);
//
// Legacy function to load a datafile; currently hard-coded grouping column to the third column.
var loadFileOld = function(text) {
dataReady = false;
// The group column `groupCol` and `hasHeader` should be dynamically-/user-set
ds.groupCol = 2;
var hasHeader = true;
// Split lines into arrays based on commas.
var delimiter = ",";
var lines = text.trim("\r").split("\n");
for (var i = 0; i < lines.length; i++) {
lines[i] = lines[i].split(delimiter);
}
// Parse the header rows.
var header;
if (lines.length > 0 && lines[0].length > 0) {
if (hasHeader || !$.isNumeric(lines[0][0])) {
header = lines[0];
lines[0] = lines[lines.length - 1];
lines.pop();
}
}
// If no header exists, give arbitrary names to the columns.
if (!header) {
header = [];
for (var i = 0; i < lines[0].length; i++)
header[i] = "Column" + i;
}
ds.colNames = header;
ds.numCols = header.length;
ds.numRows = lines.length;
ds.data = [];
// Set the initial bounds.
for (var i = 0; i < ds.numCols; i++) {
if (i == ds.groupCol)
continue;
bounds[i] = [Infinity, -Infinity];
}
// Parse values into arrays, splitting on unique groupBy elements.
var numGroups = 0;
for (var i = 0; i < ds.numRows; i++) {
// Remove the grouping column from the data.
var thisGroup = lines[i][ds.groupCol];
if (!ds.groups[thisGroup]) {
ds.groups[thisGroup] = {};
ds.groups[thisGroup].data = [];
numGroups++;
}
lines[i].splice(ds.groupCol, 1);
// add arbitrary z- coordinate to help select particular points as outliers to show
lines[i].push(Math.random());
ds.groups[thisGroup].data.push(lines[i]);
// calculate global bounds for the viewport
for (var j = 0; j < ds.numCols; j++) {
if (j == ds.groupCol)
continue;
bounds[j][0] = Math.min(lines[i][j], bounds[j][0]);
bounds[j][1] = Math.max(lines[i][j], bounds[j][1]);
}
}
// GL.Buffer (lightgl.js implementation) expects data in lists of lists, so
// allocate buffers for each group.
ds.groups.forEach(function(v,i) {
v.buf = new GL.Buffer(gl.ARRAY_BUFFER, Float32Array);
v.buf.data = v.data;
v.buf.compile(gl.STATIC_DRAW);
v.textures = [];
});
// get colors for all the groups
ds.colors = getColorsNew(74, numGroups);
// Set flag to allow rendering to continue.
dataReady = true;
};