-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathbroadcast_proof.rs
190 lines (159 loc) · 4.36 KB
/
broadcast_proof.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#[allow(unused_imports)]
use builtin::*;
use builtin_macros::*;
#[allow(unused_imports)] use vstd::prelude::*;
verus! {
mod lib {
#[allow(unused_imports)] use super::*;
pub proof fn mod_add_zero(a: int, b: int, c: int)
// by (integer_ring)
requires
a % c == 0,
b % c == 0,
ensures
(a + b) % c == 0,
{
admit();
}
pub open spec fn same_or_arbitrary<A>(a1: A, a2: A) -> A {
if a1 == a2 {
a1
} else {
arbitrary()
}
}
}
mod multiple_open {
#[allow(unused_imports)] use super::*;
pub struct Multiple {
pub i: nat,
pub modulo: nat,
}
impl Multiple {
pub open spec fn aligned(&self) -> bool {
&&& self.i % self.modulo == 0
}
pub open spec fn add(&self, v: nat) -> Self {
Multiple { i: self.i + v, ..*self }
}
}
}
mod m1 {
#[allow(unused_imports)] use super::*;
use super::multiple_open::Multiple;
proof fn lemma_increase_by_twice(
p1: Multiple, v: nat, p2: Multiple)
requires
p1.modulo != 0, p1.aligned(),
v % p1.modulo == 0,
p1.modulo == p2.modulo,
p2 == p1.add(v).add(v),
ensures
p2.aligned()
{
// assert((p1.i + v + v) % p2.modulo == 0) by (nonlinear_arith)
// requires
// p1.i % p2.modulo == 0,
// v % p2.modulo == 0,
// p2.modulo != 0,
// { }
assert((p1.i + v + v) % p2.modulo == 0) by {
super::lib::mod_add_zero(
p1.i as int, v as int, p2.modulo as int);
super::lib::mod_add_zero(
p1.i as int + v as int, v as int, p2.modulo as int);
}
}
}
mod multiple_broadcast_proof {
#[allow(unused_imports)] use super::*;
pub struct Multiple {
pub i: nat,
pub modulo: nat,
}
impl Multiple {
pub closed spec fn aligned(&self) -> bool {
&&& self.modulo != 0
&&& self.i % self.modulo == 0
}
pub closed spec fn add(&self, v: Self) -> Self {
Multiple {
i: self.i + v.i,
modulo: lib::same_or_arbitrary(self.modulo, v.modulo)
}
}
pub closed spec fn mul(&self, v: Self) -> Self {
Multiple {
i: self.i * v.i,
modulo: lib::same_or_arbitrary(self.modulo, v.modulo)
}
}
pub broadcast proof fn lemma_add_aligned(p: Self, v: Self)
requires
p.aligned(), v.aligned(), p.modulo == v.modulo,
ensures
(#[trigger] p.add(v)).aligned(),
p.add(v).modulo == lib::same_or_arbitrary(p.modulo, v.modulo),
{
super::lib::mod_add_zero(p.i as int, v.i as int, p.modulo as int);
}
pub broadcast proof fn lemma_mul_aligned(p: Self, v: Self)
requires
p.aligned(), v.aligned(), p.modulo == v.modulo,
ensures
(#[trigger] p.mul(v)).aligned(),
p.mul(v).modulo == lib::same_or_arbitrary(p.modulo, v.modulo),
{
// TODO
admit();
}
pub broadcast group group_properties {
Multiple::lemma_add_aligned,
Multiple::lemma_mul_aligned,
}
}
}
mod m2 {
#[allow(unused_imports)] use super::*;
use super::multiple_broadcast_proof::Multiple;
broadcast use Multiple::lemma_add_aligned;
proof fn increase_twice(
p1: Multiple, v: Multiple, p2: Multiple)
requires
p1.aligned(), v.aligned(), p1.modulo == v.modulo,
p2 == p1.add(v).add(v),
ensures
p2.aligned()
{
}
}
mod m3 {
#[allow(unused_imports)] use super::*;
use super::multiple_broadcast_proof::Multiple;
proof fn increase_twice(
p1: Multiple, v: Multiple, p2: Multiple)
requires
p1.aligned(), v.aligned(), p1.modulo == v.modulo,
p2 == p1.add(v).add(v),
ensures
p2.aligned()
{
broadcast use Multiple::group_properties;
}
proof fn multiply_add(
p1: Multiple, v: Multiple, p2: Multiple)
requires
p1.aligned(), v.aligned(), p1.modulo == v.modulo,
p2 == p1.mul(v).add(v),
ensures
p2.aligned()
{
broadcast use Multiple::group_properties;
}
proof fn some_vstd_lemma()
{
let a = seq![1nat, 2, 3];
assert(a[2] == 3);
}
}
} // verus!