-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathmergesort.rs
189 lines (174 loc) · 5.95 KB
/
mergesort.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
use vstd::multiset::*;
use vstd::prelude::*;
use vstd::seq_lib::group_seq_properties;
verus! {
pub open spec fn is_sorted(v: &Vec<u64>) -> bool {
forall|i: int, j: int| 0 <= i < j < v.len() ==> #[trigger] v[i] <= #[trigger] v[j]
}
fn extend_from_idx(r: &mut Vec<u64>, v: &Vec<u64>, start: usize)
requires
(start < v.len()),
ensures
(r@ == old(r)@ + [email protected](start as int, v.len() as int)),
{
let mut i: usize = start;
while (i < v.len())
invariant
(start <= i <= v.len()),
(r@ =~= old(r)@ + [email protected](start as int, i as int)),
{
r.push(v[i]);
i += 1;
}
}
pub broadcast proof fn lemma_to_multiset_distributes_over_add(s1: Seq<u64>, s2: Seq<u64>)
ensures
(#[trigger] (s1 + s2).to_multiset() =~= s1.to_multiset().add(s2.to_multiset())),
decreases s2.len(),
{
s2.to_multiset_ensures();
if (s2.len() == 0) {
assert((s1 + s2).to_multiset() =~= s1.to_multiset());
assert(s2.to_multiset() =~= Multiset::<u64>::empty());
} else {
lemma_to_multiset_distributes_over_add(s1, s2.drop_last());
vstd::seq::Seq::drop_last_distributes_over_add(s1, s2);
assert(s2.drop_last() =~= s2.remove(s2.len() - 1));
assert(s1 + s2 =~= (s1 + s2).drop_last().push(s2[(s2.len() - 1) as int]));
assert((s1 + s2).to_multiset() =~= ((s1 + s2).drop_last().push(
s2[(s2.len() - 1) as int],
)).to_multiset());
(s1 + s2).drop_last().to_multiset_ensures();
}
}
proof fn lemma_subrange_push(s1: Seq<u64>, start: int, end: int)
requires
0 <= start <= end < s1.len(),
ensures
s1.subrange(start, end).push(s1[end]) =~= s1.subrange(start, end + 1),
{
}
proof fn lemma_subrange_add(s1: Seq<u64>, start: int, mid: int, end: int)
requires
0 <= start <= mid <= end <= s1.len(),
ensures
s1.subrange(start, mid) + s1.subrange(mid, end) =~= s1.subrange(start, end),
{
}
fn merge(v1: &Vec<u64>, v2: &Vec<u64>) -> (r: Vec<u64>)
requires
is_sorted(v1),
is_sorted(v2),
ensures
([email protected]_multiset() == (v1@ + v2@).to_multiset()),
is_sorted(&r),
{
broadcast use lemma_to_multiset_distributes_over_add;
let mut r: Vec<u64> = Vec::new();
let mut i1: usize = 0;
let mut i2: usize = 0;
assert([email protected](0 as int, i1 as int) == Seq::<u64>::empty());
while (i1 < v1.len() && i2 < v2.len())
invariant
0 <= i1 <= v1.len(),
0 <= i2 <= v2.len(),
is_sorted(v1),
is_sorted(v2),
forall|i: int| i1 < v1.len() ==> 0 <= i < r.len() ==> r[i] <= v1[i1 as int],
forall|i: int| i2 < v2.len() ==> 0 <= i < r.len() ==> r[i] <= v2[i2 as int],
0 as int,
i2 as int,
)).to_multiset(),
is_sorted(&r),
{
proof {
[email protected]_multiset_ensures();
}
if v1[i1] < v2[i2] {
r.push(v1[i1]);
proof {
lemma_to_multiset_distributes_over_add(
[email protected](0 as int, i1 as int),
[email protected](0 as int, i2 as int),
);
[email protected](0 as int, i1 as int).to_multiset_ensures();
lemma_subrange_push(v1@, 0 as int, i1 as int);
lemma_to_multiset_distributes_over_add(
[email protected](0 as int, (i1 + 1) as int),
[email protected](0 as int, i2 as int),
);
}
i1 += 1;
} else {
r.push(v2[i2]);
proof {
lemma_to_multiset_distributes_over_add(
[email protected](0 as int, i1 as int),
[email protected](0 as int, i2 as int),
);
[email protected](0 as int, i2 as int).to_multiset_ensures();
lemma_subrange_push(v2@, 0 as int, i2 as int);
lemma_to_multiset_distributes_over_add(
[email protected](0 as int, i1 as int),
[email protected](0 as int, (i2 + 1) as int),
);
}
i2 += 1;
}
}
assert([email protected](0 as int, v1.len() as int) =~= v1@);
assert([email protected](0 as int, v2.len() as int) =~= v2@);
if i1 < v1.len() {
extend_from_idx(&mut r, v1, i1);
proof {
lemma_subrange_add(v1@, 0 as int, i1 as int, v1.len() as int);
assert([email protected]_multiset() =~= (v1@ + v2@).to_multiset());
}
} else if i2 < v2.len() {
extend_from_idx(&mut r, v2, i2);
proof {
lemma_subrange_add(v2@, 0 as int, i2 as int, v2.len() as int);
assert([email protected]_multiset() =~= (v1@ + v2@).to_multiset());
}
}
r
}
fn merge_sort(v: &Vec<u64>) -> (r: Vec<u64>)
ensures
([email protected]_multiset() == (*v)@.to_multiset()),
is_sorted(&r),
{
let n = v.len();
let mut v1 = v.clone();
if (n <= 1) {
v1
} else {
let mut v2 = v1.split_off(n / 2);
assert(v1@ + v2@ == v@);
proof {
lemma_to_multiset_distributes_over_add(v1@, v2@);
}
let r1 = merge_sort(&mut v1);
let r2 = merge_sort(&mut v2);
proof {
lemma_to_multiset_distributes_over_add(r1@, r2@);
}
let r = merge(&r1, &r2);
r
}
}
fn main() {
let v = vec![9, 10, 4, 5, 1, 3];
let v_sorted = merge_sort(&v);
let ghost expected_res: Seq<u64> = seq![1, 3, 4, 5, 9, 10];
proof {
broadcast use group_seq_properties;
assert(v@ =~= seq![9].push(10).push(4).push(5).push(1).push(3));
assert(expected_res =~= seq![1].push(3).push(4).push(5).push(9).push(10));
assert(expected_res.to_multiset() =~= [email protected]_multiset());
vstd::seq_lib::lemma_sorted_unique(expected_res, v_sorted@, |a: u64, b: u64| a <= b);
assert(v_sorted@ =~= expected_res);
}
}
} // verus!