-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
164 lines (138 loc) · 5.08 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
from pathlib import Path
from argparse import ArgumentParser
import torch
import lightning.pytorch as pl
from data.transforms import CineNetDataTransform
from pl_modules import MriDataModule, CineNetModule, CRNN_CineNetModule, CRNN_SR_CineNetModule
torch.set_float32_matmul_precision('medium')
def build_args():
parser = ArgumentParser()
exp_name = "crnn_NWS_6c_64chan_L1_ssim_HI_SR"
default_log_path = Path("logs") / exp_name
parser.add_argument('--input', type=str, nargs='?', default='/input', help='input directory')
parser.add_argument('--output', type=str, nargs='?', default='/output', help='output directory')
parser.add_argument("--exp_name", default=exp_name, type=str)
parser.add_argument("--mode", default="test", type=str, choices=["train", "test"])
parser.add_argument("--model", default="crnn_sr", type=str, choices=["cinenet", "crnn", "crnn_sr"])
parser.add_argument("--ckpt_path", default=None, type=str)
parser = MriDataModule.add_data_specific_args(parser)
if parser.parse_known_args()[0].model == "cinenet":
parser = CineNetModule.add_model_specific_args(parser)
elif parser.parse_known_args()[0].model == "crnn":
parser = CRNN_CineNetModule.add_model_specific_args(parser)
elif parser.parse_known_args()[0].model == "crnn_sr":
parser = CRNN_SR_CineNetModule.add_model_specific_args(parser)
parser.set_defaults(
seed=42,
batch_size=1,
default_root_dir=default_log_path,
time_window=12
)
args = parser.parse_args()
input_dir = args.input
output_dir = args.output
print("Input data store in:", input_dir)
print("Output data store in:", output_dir)
# checkpoints
checkpoint_dir = args.default_root_dir / "checkpoints"
if not checkpoint_dir.exists():
checkpoint_dir.mkdir(parents=True)
args.callbacks = [
pl.callbacks.ModelCheckpoint(
dirpath=checkpoint_dir,
verbose=True,
)
]
if args.ckpt_path is None:
ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime)
if ckpt_list:
args.ckpt_path = ckpt_list[-1]
print(args.ckpt_path)
return args
def main():
args = build_args()
pl.seed_everything(args.seed)
#* Data Module
test_transform = CineNetDataTransform(use_seed=False, time_window=args.time_window)
#* Data Loader
data_module = MriDataModule(
data_path=Path(args.input),
test_transform=test_transform,
test_sample_rate=args.test_sample_rate,
use_dataset_cache=args.use_dataset_cache,
batch_size=args.batch_size,
num_workers=args.num_workers, #os.cpu_count()
distributed_sampler=False
)
#* Network Model
if args.model == "cinenet":
model = CineNetModule(
num_cascades=args.num_cascades,
chans=args.chans,
pools=args.pools,
dynamic_type=args.dynamic_type,
weight_sharing=args.weight_sharing,
data_term=args.data_term,
lambda_=args.lambda_,
learnable=args.learnable,
lr=args.lr,
lr_step_size=args.lr_step_size,
lr_gamma=args.lr_gamma,
weight_decay=args.weight_decay,
save_space=args.save_space,
reset_cache=args.reset_cache,
)
elif args.model == "crnn":
model = CRNN_CineNetModule(
num_cascades=args.num_cascades,
chans=args.chans,
pools=args.pools,
dynamic_type=args.dynamic_type,
weight_sharing=args.weight_sharing,
data_term=args.data_term,
lambda_=args.lambda_,
learnable=args.learnable,
lr=args.lr,
lr_step_size=args.lr_step_size,
lr_gamma=args.lr_gamma,
weight_decay=args.weight_decay,
save_space=args.save_space,
reset_cache=args.reset_cache,
)
elif args.model == "crnn_sr":
model = CRNN_SR_CineNetModule(
num_cascades=args.num_cascades,
chans=args.chans,
pools=args.pools,
dynamic_type=args.dynamic_type,
weight_sharing=args.weight_sharing,
data_term=args.data_term,
lambda_=args.lambda_,
learnable=args.learnable,
lr=args.lr,
lr_step_size=args.lr_step_size,
lr_gamma=args.lr_gamma,
weight_decay=args.weight_decay,
save_space=args.save_space,
reset_cache=args.reset_cache,
)
print("Done Loading Data and Model...")
#* Trainer
trainer = pl.Trainer(
num_sanity_val_steps=0,
accelerator="gpu",
logger=False,
callbacks=args.callbacks,
default_root_dir=args.default_root_dir,
)
#* Test
if args.mode == 'test':
print("Testing "
f"{(args.model).upper()} with "
f"{args.num_cascades} unrolled iterations.\n")
trainer.test(model, data_module, ckpt_path=args.ckpt_path)
else:
raise ValueError(f"Invalid mode: {args.mode}")
if __name__ == '__main__':
main()