-
Notifications
You must be signed in to change notification settings - Fork 2
/
Model_MFML.py
640 lines (577 loc) · 26.5 KB
/
Model_MFML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 19 14:37:54 2023
@author: vvinod
"""
import numpy as np
from qml.math import cho_solve
from qml import kernels
from tqdm import tqdm
from sklearn.utils import shuffle
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.neural_network import MLPRegressor
import time
#main module
class ModelMFML:
'''
Class to perform model difference MFML.
'''
def __init__(self, reg:float=1e-9, kernel:str='matern', sigma:float=715.0,
order:int=1, metric:str='l2', gammas:np.ndarray=None,
p_bar:bool=False):
'''
Initiation function for the ModelMFML class
Parameters
----------
reg : float, optional
The Lavrentiev regularization parameter for KRR.
The default is 1e-9.
kernel : str, optional
Kernel type to be used for KRR. The default is 'matern'.
sigma : float, optional
Kernel width for KRR kernel. Ignored if linear kernel is chosen.
The default is 715.0.
order : int, optional
Order of the Matern kernel. Ignored by other kernel types.
The default is 1.
metric : str, optional
Metric of the Matern kernel. Ignored by other kernel types.
The default is 'l2'.
gammas : np.ndarray, optional
The individual gammas for the Sargan kernel. Ignored by the rest.
The default is None.
p_bar : bool, optional
Enables or disables (viewing) tqdm progress bar. Default is False.
Returns
-------
None.
'''
#init params
self.reg = reg
self.kernel = kernel
self.sigma = sigma
self.order = order
self.metric = metric
self.gammas = gammas
#train params
self.X_train_parent = None
self.X_trains = None
self.y_trains = None
self.indexes = None
self.fidelities = None
#model params
self.models = None
self.coeffs = None
self.intercept = None
self.LCCoptimizer = None
#score params
self.mae = 0.0
self.rmse = 0.0
#time params
self.train_time = 0.0
self.predict_time = 0.0
self.p_bar = p_bar
def property_differences(fidelities=None):
'''
Function to generate property differences between fidelities.
The first object in the diff_array is the baseline fidelity. This
is not a difference between fidelities. The subsequent objects
are differences between corresponding fidelities.
Parameters
----------
fidelities : np.ndarray(str)
Array of fidelities of properties to be used in the MFML.
Returns
-------
diff_array : np.ndarray(object)
Array of differences of property of interest.
index_array : np.ndarray(object)
Array of indexes corresponding to the properties.
This indicates where the properties are with
respect to the features.
'''
#if user specifies fidelities
#if not isinstance(fidelities, type(None)):
# self.fidelities = np.copy(fidelities)
#instatiate variables to store diff and indexes
energy_array = np.zeros((len(fidelities)), dtype=object)
index_array = np.zeros((len(fidelities)), dtype=object)
#load lowest fidelity file
#currently hard-coded to a directory. Should be flexible.
E0 = np.loadtxt('Data/energies/'+fidelities[0])
energy_array[0] = E0[:,1]
#save index_0
index_array[0] = np.asarray([np.arange(0,energy_array[0].shape[0]),
np.arange(0,energy_array[0].shape[0])]).T
#run energy difference loop
for i in tqdm(range(0,len(fidelities)-1),
desc='Generating energy differences and indexing...',
leave=False):
E_diff = []
index = []
#load fidelities i and i+1
Ei = np.loadtxt('Data/energies/'+fidelities[i])
Eip1 = np.loadtxt('Data/energies/'+fidelities[i+1])
#loop to check location with respect to baseline fidelity
#this is currently also assumed to be the feature index.
#quadratic issue here - FIX LATER
for j in tqdm(range(len(Ei)),leave=False):
for k in tqdm(range(len(Eip1)),leave=False):
if Ei[j,0]==Eip1[k,0]:
#where time stamp of Ei is the same as
#time stamp of E0
index.append([np.where(E0[:,0]==Eip1[k,0])[0][0], k])
#save as np arrays of specific types.
index = np.asarray(index,dtype=int)
#E_diff = np.asarray(E_diff,dtype=float)
index_array[i+1] = np.copy(index)
energy_array[i+1] = np.copy(Eip1[:,1])
#return array of differences and corresponding indexes
return energy_array, index_array
def shuffle_indexes(self, n_trains=None, seed=0):
'''
Function to shuffle the indexes for MFML training.
This method of shuffling ensures that the nested
structure of the training data is retained.
Parameters
----------
n_trains : np.ndarray(int)
Array of training sizes across fidelities.
seed : int
Seed to be used during shuffling using numpy.
Returns
-------
shuffled_index_array : np.ndarray(object)
Array of shuffled indexes with sizes corresponding to n_trains.
'''
#if no n_trains specified, use the entire training data
if isinstance(n_trains, type(None)):
n_trains = np.asarray([self.y_trains[i].shape[0]
for i in range(self.y_trains.shape[0])])
print("Training sizes not provided.",
f"\nManually setting training sizes as: {n_trains}")
#instantiate variable to store shuffled indexes
shuffled_index_array = np.zeros((n_trains.shape[0]), dtype=object)
#shuffle index_0
ind_i = self.indexes[int(n_trains.shape[0]-1)]
#####shuffle index_i#########
np.random.seed(seed)
np.random.shuffle(ind_i)
ind_tilda_i = ind_i[0:n_trains[-1],:]
shuffled_index_array[int(n_trains.shape[0]-1)] = ind_tilda_i
#shuffle subsequent fidelities
for i in range(n_trains.shape[0]-2,-1,-1):
ind_im1 = self.indexes[i]
#set difference between im1 and i
index_common = []
for j in range(ind_im1.shape[0]):
if (ind_im1[j,0] in ind_tilda_i[:,0]):
index_common.append(j)
ind_im1_temp = np.delete(ind_im1,index_common,axis=0)
#shuffle ind_im1_temp
np.random.seed(seed)
np.random.shuffle(ind_im1_temp)
#append shuffled ind_i to this
ind_tilda_i = np.concatenate((ind_im1[index_common,:],
ind_im1_temp[0:n_trains[i]-
len(ind_tilda_i),:]))
shuffled_index_array[i] = ind_tilda_i
#prepare for next run of the loop
ind_i = ind_im1
#return the shuffled indexes
return shuffled_index_array
def y_train_breakup(self):
n=self.indexes.shape[0]
y_trains = np.zeros((2*n-1),dtype=object)
count = 0
#upper triangle
for i in tqdm(range(n), desc='Extracting upper y_trains',
leave=self.p_bar):
ind_i = self.indexes[i][:,1]
y_trains[count] = np.copy(self.y_trains[i][ind_i])
count += 1
#lower triangle
for i in tqdm(range(n-1), desc='Exctracting lower y_trains', leave=self.p_bar):
ind_i = self.indexes[i]
ind_ip1 = self.indexes[i+1]
#find correct indexes
c_i = []
for row in ind_ip1:
temp_i = np.where(ind_i[:,0] == row[0])[0]
if np.size(temp_i) != 0:
c_i.append(ind_i[temp_i[0], 1])
c_i = np.asarray(c_i)
y_trains[count] = np.copy(self.y_trains[i][c_i])
count += 1
self.y_trains = y_trains
def X_train_breakup(self):
'''
Function to break up X_train_parent into different X_trains
for each fidelity
Returns
-------
None. Stored in self.X_trains
'''
n=self.indexes.shape[0]
X_trains = np.zeros((n),dtype=object)
for i in tqdm(range(n),desc='Extracting X_trains', leave=self.p_bar):
ind_i = self.indexes[i][:,0]
X_trains[i] = self.X_train_parent[ind_i]
self.X_trains = np.copy(X_trains)
def kernel_generators(self, X1:np.ndarray, X2:np.ndarray = None):
'''
Function to return various kernels to be used in the MFML if the
representations are not FCHL.
Parameters
----------
X1 : np.ndarray
Array of representations. Usually refers to the training
representations.
X2 : np.ndarray, optional
Array of representations. Refers to the test representations.
If not specified, then it is considered to be same as X1.
The default is None.
Returns
-------
K : np.ndarray
Kernel matrix of representations.
'''
#Case for training kernel
if isinstance(X2,type(None)):
X2=np.copy(X1) #make X2 a copy of X1 if X2 is not specified
#generating kernels
if self.kernel=='sargan':
assert self.gammas is not None, 'sargan kernels require additional parameter of gammas. See qml.kernel.sargan_kernel for more details. Terminated.'
K = kernels.sargan_kernel(X1, X2, self.sigma, self.gammas)
elif self.kernel=='gaussian':
K = kernels.gaussian_kernel(X1, X2, self.sigma)
elif self.kernel=='laplacian':
K = kernels.laplacian_kernel(X1, X2, self.sigma)
elif self.kernel=='linear':
K = kernels.linear_kernel(X1, X2)
elif self.kernel=='matern':
K = kernels.matern_kernel(X1, X2, sigma=self.sigma,
order=self.order,
metric=self.metric)
else:
K = None
return K
def KRR(self, K:np.ndarray, y:np.ndarray):
'''
Function to perform KRR given a generic kernel and corresponding
learning feature.
Parameters
----------
K : np.ndarray (n_mols x n_mols)
Kernel matrix generated from the representations.
y : np.ndarray (n_mols x 1)
Reference property array.
Returns
-------
alpha : np.ndarray
Array of KRR coefficients.
'''
#copy to prevent overwriting in class atributes
Ktemp = np.copy(K)
#regularization
Ktemp[np.diag_indices_from(Ktemp)] += self.reg #regularisation
alpha = cho_solve(Ktemp,y) #perform KRR
#return the coeff for this submodel
return alpha
def train(self, X_train_parent:np.ndarray, fidelities:np.ndarray=None,
y_trains:np.ndarray=None, indexes:np.ndarray=None,
shuffle:bool=False, n_trains:np.ndarray=None, seed:int=0):
'''
Function to train the MFML model with model difference instead of property difference.
It can be shown that the two approaches are equivalent.
Parameters
----------
X_train_parent : np.ndarray
The feature set for the lowest fidelity. Nestedness of subsequent fidelities is assumed.
fidelities : np.ndarray, optional
The fidelity list from which to load fidelity properties.
Ignored if y_trains and indexes are specified.
The default is None.
y_trains : np.ndarray, optional
The training properties. Contains the different fidelity properties as objects.
The default is None.
indexes : np.ndarray, optional
Indexes of the features and the properties for MFML.
The default is None.
shuffle : bool, optional
Whether to shuffle the training samples. Shuffling in MFML retains the nested structure.
The default is False.
n_trains : np.ndarray, optional
The number of training samples to be used at each fidelity.
Ignored if shuffle is False; all training samples are used as is.
The default is None.
seed : int, optional
random seed for shuffling. Ignored if Shuffle set to False.
The default is 0.
Returns
-------
None.
Models and train time are saved to the class attributes.
'''
#measure time of process
tstart = time.time()
#save X_train into the class attribure, will be used in predictions
self.X_train_parent = np.copy(X_train_parent)
if isinstance(y_trains, type(None)) and isinstance(indexes, type(None)):
print('No indexes or training properties specified. Checking for class referenced properties and indexes.')
if isinstance(self.y_trains,type(None)) and isinstance(self.indexes,type(None)):
assert not isinstance(fidelities,type(None)) or not isinstance(self.fidelities,type(None)), 'Please specify either fidelities or the training properties and indexes.'
if isinstance(self.fidelities, type(None)):
self.fidelities = fidelities
self.y_trains, self.indexes = self.property_differences()
else:
self.y_trains = y_trains
self.indexes = indexes
nfids = self.indexes.shape[0]
#shuffling indexes
if shuffle:
for i in range(nfids):
self.indexes = self.shuffle_indexes(n_trains=n_trains, seed=seed)
#get the different X_trains
self.X_train_breakup() #saves in self.X_trains
self.y_train_breakup() #saves in self.y_trains
#initiate arrays to store values
alpha_array = np.zeros((2*nfids-1), dtype=object)
count = 0
#upper training
for i in tqdm(range(nfids),desc='Training upper ML models...',
leave=self.p_bar):
K_train_upper_i = self.kernel_generators(X1 = self.X_trains[i],
X2 = self.X_trains[i])
alpha_array[count] = self.KRR(K = K_train_upper_i,
y = self.y_trains[count])
count += 1
#lower training
for i in tqdm(range(nfids-1),desc='Training lower ML models',
leave=self.p_bar):
K_train_i = self.kernel_generators(X1 = self.X_trains[i+1],
X2 = self.X_trains[i+1])
alpha_array[count] = self.KRR(K = K_train_i,
y = self.y_trains[count])
count += 1
tend = time.time()
self.train_time = tend-tstart
self.models = np.copy(alpha_array)
def predict(self, X_test:np.ndarray, X_val:np.ndarray=None,
y_test:np.ndarray=None, y_val:np.ndarray=None,
optimiser:str='default', **optargs):
'''
Function to predict using the MFML model. User can choose between default coefficients of +-1
or solve for coefficients using linear regression on a validation set.
Parameters
----------
X_test : np.ndarray
Features of the test set to be evaluated.
X_val : np.ndarray, optional
Features of the validation set. Ignored if default optimiser is used.
The default is None.
y_test : np.ndarray, optional
Property of the test set. Only used to calculate scores.
The default is None.
y_val : np.ndarray, optional
Properties of the validation set. Ignored if default optimiser is used.
The default is None.
optimiser : str, optional
The type of optimiser to be used. Currently llows for
'OLS' - ordinary least squares,
'LRR' - Linear Ridge Regression,
and 'default' which is based on SGCT.
The default is 'default'.
**optargs : dict
Arguements to pass to the optimization method. For KRR, it takes
'kernel_type', 'sigma','reg'.
For MLPR the kwargs correspond to the values as described in
the sklearn package.
Returns
-------
final_preds : np.ndarray
Predictions on the test set.
'''
tstart = time.time()
nfids = self.indexes.shape[0]
#final preds
test_preds = np.zeros((y_test.shape[0], 2*nfids-1), dtype=float)
if not isinstance(y_val,type(None)):
val_preds = np.zeros((y_val.shape[0], 2*nfids-1), dtype=float)
#for prediction
count = 0
#upper triangle preds
for i in tqdm(range(nfids), desc='Upper MFML predictions', leave=self.p_bar):
if not isinstance(y_val,type(None)):
K_val_i = self.kernel_generators(X1 = self.X_trains[i],
X2 = X_val)
val_preds[:,count] = np.dot(self.models[count],K_val_i)
K_test_i = self.kernel_generators(X1 = self.X_trains[i],
X2 = X_test)
test_preds[:,count] = np.dot(self.models[count], K_test_i)
count += 1
#lower triangle preds
for i in tqdm(range(nfids-1), desc='Lower MFML predictions',
leave=self.p_bar):
K_test_i = self.kernel_generators(X1 = self.X_trains[i+1],
X2 = X_test)
if not isinstance(y_val,type(None)):
K_val_i = self.kernel_generators(X1 = self.X_trains[i+1],
X2 = X_val)
val_preds[:,count] = np.dot(self.models[count], K_val_i)
test_preds[:,count] = np.dot(self.models[count], K_test_i)
count += 1
#ordinary least squares
if optimiser=='OLS':
assert not isinstance(y_val,type(None)), "Validation set must be provided for OLS optimization"
#print(optargs)
defaultKwargs = { 'copy_X': True, 'fit_intercept': False }
defaultKwargs.update(**optargs)
regressor = LinearRegression(**defaultKwargs)
regressor.fit(val_preds, y_val)
final_preds = regressor.predict(test_preds)
self.LCCoptimizer = regressor
#self.coeffs = regressor.coef_
#self.intercept = regressor.intercept_
#linear ridge regression
elif optimiser=='LRR':
assert not isinstance(y_val,type(None)), "Validation set must be provided for LRR optimization"
defaultKwargs = {'alpha':1e-9, 'fit_intercept':False,
'copy_X':True, 'max_iter':None,
'tol':1e-4, 'solver':'svd', 'random_state':0}
defaultKwargs.update(**optargs)#{**defaultKwargs,**optargs}
regressor = Ridge(**defaultKwargs)
regressor.fit(val_preds,y_val)
final_preds = regressor.predict(test_preds)
self.LCCoptimizer = regressor
#self.coeffs = regressor.coef_
#self.intercept = regressor.intercept_
#LASSO - linear
elif optimiser == 'LASSO':
assert not isinstance(y_val,type(None)), "Validation set must be provided for OLS optimization"
#print(optargs)
defaultKwargs = {'alpha':1.0, 'fit_intercept':False,
'precompute':False, 'copy_X':True,
'max_iter':1000, 'tol':1e-4,
'warm_start':False, 'positive':False,
'random_state':0,
'selection':'cyclic'}
defaultKwargs.update(**optargs)
regressor = Lasso(**defaultKwargs)
regressor.fit(val_preds,y_val)
final_preds = regressor.predict(test_preds)
self.LCCoptimizer = regressor
#Multi-layer perceptron - non-linear
elif optimiser=='MLPR':
defaultKwargs = {'hidden_layer_sizes':(100,), 'activation':'relu',
'solver':'adam', 'alpha':0.0001,
'batch_size':'auto', 'learning_rate':'constant',
'learning_rate_init':0.001, 'power_t':0.5,
'max_iter':200, 'shuffle':True,
'random_state':None, 'tol':0.0001,
'verbose':False, 'warm_start':False,
'momentum':0.9, 'nesterovs_momentum':True,
'early_stopping':False, 'validation_fraction':0.1,
'beta_1':0.9, 'beta_2':0.999, 'epsilon':1e-08,
'n_iter_no_change':10, 'max_fun':15000}
defaultKwargs.update(**optargs) #{**defaultKwargs, **optargs}
MLPR = MLPRegressor(**defaultKwargs)
MLPR.fit(val_preds, y_val)
final_preds = MLPR.predict(test_preds)
self.LCCoptimizer = MLPR
#self.coeffs = np.asarray(MLPR.coefs_,dtype=object)
#KRR optimizer - non-linear
elif optimiser=='KRR':
defaultKwargs = {'sigma':700.0,'reg':1e-9,
'kernel_type':'gaussian', 'order':1,
'metric':'l2'}
defaultKwargs.update(**optargs) #{**defaultKwargs, **optargs}
K_val = kernels.gaussian_kernel(val_preds, val_preds,
sigma=defaultKwargs['sigma'])
K_val[np.diag_indices_from(K_val)]+=defaultKwargs['reg']
opt_alpha = cho_solve(K_val, y_val)
K_eval = kernels.gaussian_kernel(val_preds, test_preds,
sigma=defaultKwargs['sigma'])
final_preds = np.dot(opt_alpha,K_eval)
self.coeffs = opt_alpha
#default +-1 across fidelities
else:
final_preds = np.zeros((y_test.shape[0]),dtype=float)
count = 0
for i in range(nfids):
final_preds[:] += test_preds[:,count]
count += 1
for i in range(nfids-1):
final_preds -= test_preds[:,count]
count += 1
tend = time.time()
self.predict_time = tend-tstart
#calculate MAE and RMSE if y_test given
if not isinstance(y_test,type(None)):
self.mae = np.mean(np.abs(final_preds-y_test))
self.rmse = np.sqrt(np.mean((final_preds-y_test)**2))
return final_preds
def kernel_space_optimiser(self, X_val:np.ndarray, val_trues:np.ndarray):
nfids = self.indexes.shape[0]
#create the big lambda matrix
bigLam = np.zeros((2*nfids-1, 2*nfids-1),dtype=float)
Mval = np.zeros((2*nfids-1),dtype=float)
#perform KRR for validation set
val_K = self.kernel_generators(X1=X_val)
alpha_val = self.KRR(val_K, val_trues)
#prepare X_trains for this process by unpacking
unpacked_X_trains = np.zeros((2*nfids-1),dtype=object)
count = 0
for i in range(nfids):
unpacked_X_trains[count] = self.X_trains[i]
count += 1
for i in range(nfids-1):
unpacked_X_trains[count] = self.X_trains[i+1]
count += 1
for s in tqdm(range(2*nfids-1), leave=self.p_bar,
desc='Calculating subspace coefficients...'):
#K_s = self.kernel_generators(X1 = unpacked_X_trains[s])
K_sval = self.kernel_generators(X1=unpacked_X_trains[s], X2=X_val)
Mval[s] = np.dot(self.models[s], np.dot(K_sval, alpha_val))
for m in range(2*nfids-1):
K_sm = self.kernel_generators(X1=unpacked_X_trains[s],
X2=unpacked_X_trains[m])
temp_inn = np.dot(self.models[s], np.dot(K_sm, self.models[m]))
bigLam[s,m] = np.copy(temp_inn)
#bigLam[m,s] = np.copy(temp_inn)
'''
for s in tqdm(range(2*nfids-1), leave=self.p_bar,
desc='Calculating subspace coefficients...'):
K_s = self.kernel_generators(X1 = unpacked_X_trains[s])
bigLam[s,s] = np.dot(self.models[s], np.dot(K_s, self.models[s]))
#Build the M-validation matrix
K_sval = self.kernel_generators(X1=unpacked_X_trains[s], X2=X_val)
Mval[s] = np.dot(self.models[s], np.dot(K_sval, alpha_val))
for m in range(s+1, 2*nfids-1):
K_sm = self.kernel_generators(X1=unpacked_X_trains[s],
X2=unpacked_X_trains[m])
temp_inn = np.dot(self.models[s], np.dot(K_sm, self.models[m]))
bigLam[s,m] = np.copy(temp_inn)
bigLam[m,s] = np.copy(temp_inn)
'''
#perform Cho-decomp to solve bigLam * C = Mval
#bigLam[np.diag_indices_from(bigLam)] += self.reg
kernel_coeffs = cho_solve(bigLam, Mval)
#kernel_coeffs = kernel_coeffs/np.sum(kernel_coeffs)
#np.save('Xun1',unpacked_X_trains)
#np.save('val_al1',alpha_val)
#np.save('Mval1',Mval)
#np.save('bigLam1',bigLam)
return kernel_coeffs
#Other optimizers for LCC
'''
elif optimiser=='kernel_space':
assert not isinstance(y_val,type(None)), "Validation set cannot be None for kernel space optimisation"
final_preds = np.zeros((y_test.shape[0]), dtype=float)
#perform kernel space coefficient optimisation
self.coeffs = self.kernel_space_optimiser(X_val=X_val,
val_trues=y_val)
for s in range(2*nfids-1):
final_preds += self.coeffs[s]*test_preds[:,s]
'''