forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
374 lines (334 loc) · 14.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
from typing import Optional
from ..._utils import pad_vocab_size
from ...functional import Tensor, recv, send
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
Embedding, GatedMLP, MoeConfig, PositionEmbeddingType,
RmsNorm)
from ...lora_manager import LoraBuildConfig, use_lora
from ...mapping import Mapping
from ...module import Module
from ...plugin import init_all_reduce_helper
from ...quantization import W8A8_SQ_PLUGIN_LIST, QuantAlgo
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
PretrainedConfig, QuantConfig)
class LLaMADecoderLayer(Module):
def __init__(self, config: PretrainedConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
tp_rank=config.mapping.tp_rank,
quant_mode=config.quant_mode)
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
ClsMLP = GatedMLP
mlp_kwargs = {}
if config.moe_num_experts > 1:
ClsMLP = MOE
mlp_kwargs = {
"moe_config":
MoeConfig(
config.moe_num_experts,
config.moe_top_k,
config.moe_tp_mode,
config.moe_normalization_mode,
),
"tp_rank":
config.mapping.tp_rank,
}
self.mlp = ClsMLP(hidden_size=config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(
self,
hidden_states,
attention_mask=None,
medusa_packed_mask=None, # For Medusa support
medusa_position_offsets=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
medusa_packed_mask=medusa_packed_mask, # For Medusa support
medusa_position_offsets=medusa_position_offsets,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class LLaMAModel(Module):
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
init_all_reduce_helper()
self.mapping = config.mapping
if self.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(LLaMADecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(
self,
input_ids,
position_ids=None,
use_cache=False,
attention_mask=None,
medusa_position_offsets=None, # For Medusa support
medusa_packed_mask=None, # For Medusa support
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
medusa_position_offsets=medusa_position_offsets,
medusa_packed_mask=medusa_packed_mask)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class LLaMAForCausalLM(DecoderModelForCausalLM):
def __init__(self, config: PretrainedConfig):
self.check_config(config)
transformer = LLaMAModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
super().__init__(config, transformer, lm_head)
def check_config(self, config):
config.set_if_not_exist('mlp_bias', False)
config.set_if_not_exist('attn_bias', False)
config.set_if_not_exist('rotary_base', 10000.0)
config.set_if_not_exist('rotary_scaling', None)
config.set_if_not_exist('moe_num_experts', 0)
config.set_if_not_exist('moe_top_k', 0)
config.set_if_not_exist('moe_tp_mode',
MoeConfig.ParallelismMode.TENSOR_PARALLEL)
config.set_if_not_exist(
'moe_normalization_mode',
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)
@classmethod
def from_hugging_face(cls,
hf_model_dir,
dtype='float16',
mapping: Optional[Mapping] = None,
**kwargs):
from . import convert
if mapping is None:
mapping = Mapping()
llama = convert.from_hugging_face(
cls,
hf_model_dir,
dtype,
mapping=mapping,
quantization=kwargs.get('quantization', QuantConfig()),
load_by_shard=kwargs.get('load_by_shard', False),
load_model_on_cpu=kwargs.get('load_model_on_cpu', False),
override_fields=kwargs.get('override_fields', {}),
skip_loading_weights=kwargs.get('skip_loading_weights', False),
preloaded_model=kwargs.get('preloaded_model', None))
return llama
def default_plugin_config(self, **kwargs):
plugin_config = super().default_plugin_config(**kwargs)
if self.quant_mode.is_int4_weight_only_per_group():
plugin_config.set_weight_only_groupwise_quant_matmul_plugin()
return plugin_config
@classmethod
def from_meta_ckpt(cls,
meta_ckpt_dir,
dtype,
mapping,
use_parallel_embedding: Optional[bool] = False,
embedding_sharding_dim: Optional[int] = 0):
meta_config = None
with open(Path(meta_ckpt_dir, "params.json")) as fp:
meta_config: dict = json.load(fp)
assert meta_config is not None
config = {}
n_embd = meta_config["dim"]
n_head = meta_config["n_heads"]
n_kv_head = meta_config.get("n_kv_heads", n_head)
if "hidden_dim" in meta_config:
inter_size = meta_config["hidden_dim"]
else:
multiple_of = meta_config.get("multiple_of", 1)
n_embd_ = int(4 * n_embd * 2 / 3)
ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
inter_size = multiple_of * (
(int(n_embd_ * ffn_dim_multiplier) + multiple_of - 1) //
multiple_of)
# meta checkpoint don't have vocab_size|hidden_act|rotary_base specified, use same default value as HF
config.update({
'architecture': "LlamaForCausalLM",
'dtype': dtype,
'logits_dtype': 'float32',
'num_hidden_layers': meta_config["n_layers"],
'num_attention_heads': n_head,
'hidden_size': n_embd,
'intermediate_size': inter_size,
'num_key_value_heads': n_kv_head,
'vocab_size': 32000,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': 2048,
'hidden_act': 'silu',
'rotary_base': 10000.0,
'norm_epsilon': meta_config["norm_eps"],
'mapping': {
'world_size': mapping.tp_size * mapping.pp_size,
'tp_size': mapping.tp_size,
'pp_size': mapping.pp_size,
},
})
pretrained_config = PretrainedConfig.from_dict(config)
pretrained_config.use_parallel_embedding = use_parallel_embedding
pretrained_config.embedding_sharding_dim = embedding_sharding_dim
pretrained_config.set_rank(mapping.rank)
llama = cls(pretrained_config)
from .weight import load_from_meta_llama
weights = load_from_meta_llama(meta_ckpt_dir, mapping,
pretrained_config)
llama.load(weights)
return llama
@classmethod
def quantize(
cls,
hf_model_dir,
output_dir,
quant_config: QuantConfig,
*,
dtype='float16',
mapping: Optional[Mapping] = None,
calib_batches=512,
calib_batch_size=1,
random_seed=1234,
tokenizer_max_seq_length=2048,
**kwargs,
):
DEFAULT_AMMO_FLOW = [
QuantAlgo.W4A16_AWQ, QuantAlgo.FP8, QuantAlgo.W8A8_SQ_PER_CHANNEL,
QuantAlgo.W4A8_AWQ
]
use_ammo_quantization = quant_config.quant_algo in DEFAULT_AMMO_FLOW
if use_ammo_quantization:
super().quantize(hf_model_dir,
output_dir,
quant_config,
dtype=dtype,
mapping=mapping,
calib_batches=calib_batches,
calib_batch_size=calib_batch_size,
random_seed=random_seed,
tokenizer_max_seq_length=tokenizer_max_seq_length)
else:
# non-ammo, the legacy TRT-LLM native quantization algorithm:
# sq, int4/int8 weights only, int8 kv cache
NATIVE_QUANT_FLOW = [QuantAlgo.W4A16, QuantAlgo.W8A16, None
] + W8A8_SQ_PLUGIN_LIST
is_valid_native_quant = (quant_config.quant_algo in NATIVE_QUANT_FLOW) and \
(quant_config.kv_cache_quant_algo in [QuantAlgo.INT8, None])
assert quant_config.quant_algo is not None or quant_config.kv_cache_quant_algo is not None, \
"There is no point to call the quantize function if both quant_algo and kv_cache_quant_algo is None"
assert is_valid_native_quant, f"Internal error: shall call AMMO for this quantization {quant_config}"
from . import convert
convert.quantize(
dtype,
hf_model_dir,
output_dir,
mapping,
quant_config,
override_fields=kwargs.get('override_fields', {}),
dataset_cache_dir=kwargs.get('dataset_cache_dir', None),
)
def use_lora(self, lora_config: LoraBuildConfig):
use_lora(self, lora_config)