-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathsvm.py
122 lines (100 loc) · 4.14 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import cvxopt
import numpy as np
from sklearn.svm import SVC #for comparison only
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
def rbf_kernel(gamma, **kwargs):
def f(x1, x2):
distance = np.linalg.norm(x1 - x2) ** 2
return np.exp(-gamma * distance)
return f
class SupportVectorMachine(object):
def __init__(self, C=1, kernel=rbf_kernel, power=4, gamma=None, coef=4):
self.C = C
self.kernel = kernel
self.power = power
self.gamma = gamma
self.coef = coef
self.lagr_multipliers = None
self.support_vectors = None
self.support_vector_labels = None
self.intercept = None
def fit(self, X, y):
n_samples, n_features = np.shape(X)
# Set gamma to 1/n_features by default
if not self.gamma:
self.gamma = 1 / n_features
# Initialize kernel method with parameters
self.kernel = self.kernel(
power=self.power,
gamma=self.gamma,
coef=self.coef)
# Calculate kernel matrix
kernel_matrix = np.zeros((n_samples, n_samples))
for i in range(n_samples):
for j in range(n_samples):
kernel_matrix[i, j] = self.kernel(X[i], X[j])
# Define the quadratic optimization problem
P = cvxopt.matrix(np.outer(y, y) * kernel_matrix, tc='d')
q = cvxopt.matrix(np.ones(n_samples) * -1)
A = cvxopt.matrix(y, (1, n_samples), tc='d')
b = cvxopt.matrix(0, tc='d')
if not self.C: #if its empty
G = cvxopt.matrix(np.identity(n_samples) * -1)
h = cvxopt.matrix(np.zeros(n_samples))
else:
G_max = np.identity(n_samples) * -1
G_min = np.identity(n_samples)
G = cvxopt.matrix(np.vstack((G_max, G_min)))
h_max = cvxopt.matrix(np.zeros(n_samples))
h_min = cvxopt.matrix(np.ones(n_samples) * self.C)
h = cvxopt.matrix(np.vstack((h_max, h_min)))
# Solve the quadratic optimization problem using cvxopt
minimization = cvxopt.solvers.qp(P, q, G, h, A, b)
# Lagrange multipliers
lagr_mult = np.ravel(minimization['x'])
# Extract support vectors
# Get indexes of non-zero lagr. multipiers
idx = lagr_mult > 1e-11
# Get the corresponding lagr. multipliers
self.lagr_multipliers = lagr_mult[idx]
# Get the samples that will act as support vectors
self.support_vectors = X[idx]
# Get the corresponding labels
self.support_vector_labels = y[idx]
# Calculate intercept with first support vector
self.intercept = self.support_vector_labels[0]
for i in range(len(self.lagr_multipliers)):
self.intercept -= self.lagr_multipliers[i] * self.support_vector_labels[
i] * self.kernel(self.support_vectors[i], self.support_vectors[0])
def predict(self, X):
y_pred = []
# Iterate through list of samples and make predictions
for sample in X:
prediction = 0
# Determine the label of the sample by the support vectors
for i in range(len(self.lagr_multipliers)):
prediction += self.lagr_multipliers[i] * self.support_vector_labels[
i] * self.kernel(self.support_vectors[i], sample)
prediction += self.intercept
y_pred.append(np.sign(prediction))
return np.array(y_pred)
def main():
#load dataset
iris = load_iris()
X = iris.data[:100,:]
y = 2*iris.target[:100] - 1 #map to {+1,-1} labels
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
clf = SupportVectorMachine(kernel=rbf_kernel, gamma = 1)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print ("Accuracy (scratch):", accuracy)
clf_sklearn = SVC(gamma = 'auto')
clf_sklearn.fit(X_train, y_train)
y_pred2 = clf_sklearn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred2)
print ("Accuracy :", accuracy)
if __name__ == "__main__":
main()