-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathga.py
95 lines (68 loc) · 3.31 KB
/
ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import string
class GeneticAlgorithm():
def __init__(self, target_string, population_size, mutation_rate):
self.target = target_string
self.population_size = population_size
self.mutation_rate = mutation_rate
self.letters = [" "] + list(string.ascii_letters)
def initialize(self):
# init population with random strings
self.population = []
for _ in range(self.population_size):
individual = "".join(np.random.choice(self.letters, size=len(self.target)))
self.population.append(individual)
def calculate_fitness(self):
#calculate fitness of each individual in a population
population_fitness = []
for individual in self.population:
# calculate loss as the distance between characters
loss = 0
for i in range(len(individual)):
letter_i1 = self.letters.index(individual[i])
letter_i2 = self.letters.index(self.target[i])
loss += abs(letter_i1 - letter_i2)
fitness = 1 / (loss + 1e-6)
population_fitness.append(fitness)
return population_fitness
def mutate(self, individual):
#randomly change the characters with probability equal to mutation_rate
individual = list(individual)
for j in range(len(individual)):
if np.random.random() < self.mutation_rate:
individual[j] = np.random.choice(self.letters)
return "".join(individual)
def crossover(self, parent1, parent2):
#create children from parents by crossover
cross_i = np.random.randint(0, len(parent1))
child1 = parent1[:cross_i] + parent2[cross_i:]
child2 = parent2[:cross_i] + parent1[cross_i:]
return child1, child2
def run(self, iterations):
self.initialize()
for epoch in range(iterations):
population_fitness = self.calculate_fitness()
fittest_individual = self.population[np.argmax(population_fitness)]
highest_fitness = max(population_fitness)
if fittest_individual == self.target:
break
#select individual as a parent proportional to individual's fitness
parent_probabilities = [fitness / sum(population_fitness) for fitness in population_fitness]
#next generation
new_population = []
for i in np.arange(0, self.population_size, 2):
#select two parents
parent1, parent2 = np.random.choice(self.population, size=2, p=parent_probabilities, replace=False)
#crossover to produce offspring
child1, child2 = self.crossover(parent1, parent2)
#save mutated offspring for next generation
new_population += [self.mutate(child1), self.mutate(child2)]
print("iter %d, closest candidate: %s, fitness: %.4f" %(epoch, fittest_individual, highest_fitness))
self.population = new_population
print("iter %d, final candidate: %s" %(epoch, fittest_individual))
if __name__ == "__main__":
target_string = "Genome"
population_size = 50
mutation_rate = 0.1
ga = GeneticAlgorithm(target_string, population_size, mutation_rate)
ga.run(iterations = 1000)