forked from xiaoyu2er/leetcode-js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path053-Maximum-Subarray.js
56 lines (45 loc) · 1.3 KB
/
053-Maximum-Subarray.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
* https://leetcode.com/problems/maximum-subarray/description/
* Difficulty:Easy
*
* Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
*
* For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
* the contiguous subarray [4,-1,2,1] has the largest sum = 6.
*/
/**
*
* https://discuss.leetcode.com/topic/6413/dp-solution-some-thoughts
*
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function (nums) {
var dp = [];
var max = dp[0] = nums[0];
for (var i = 1; i < nums.length; i++) {
dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
max = Math.max(dp[i], max);
}
return max;
};
/**
* https://discuss.leetcode.com/topic/5000/accepted-o-n-solution-in-java/11
* @param nums
* @returns {*}
*/
var maxSubArray = function (nums) {
var max = nums[0];
var sum = nums[0];
for (var i = 1; i < nums.length; i++) {
sum = sum > 0 ? (sum + nums[i]) : nums[i];
max = Math.max(sum, max);
}
return max;
};
console.log(maxSubArray([1, 1, 1]) == 3);
console.log(maxSubArray([-1, -1, -1]) == -1);
console.log(maxSubArray([-2, 1, -3, 4, -1, 2, 1, -5, 4]) == 6);
console.log(maxSubArray([-2, -1]) == -1);
console.log(maxSubArray([-1]) == -1);
console.log(maxSubArray([-1, 0]) == 0);