International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows: "a" maps to ".-", "b" maps to "-...", "c" maps to "-.-.", and so on.
For convenience, the full table for the 26 letters of the English alphabet is given below:
;[
'.-',
'-...',
'-.-.',
'-..',
'.',
'..-.',
'--.',
'....',
'..',
'.---',
'-.-',
'.-..',
'--',
'-.',
'---',
'.--.',
'--.-',
'.-.',
'...',
'-',
'..-',
'...-',
'.--',
'-..-',
'-.--',
'--..',
]
Now, given a list of words, each word can be written as a concatenation of the Morse code of each letter. For example, "cab" can be written as "-.-.-....-", (which is the concatenation "-.-." + "-..." + ".-"). We'll call such a concatenation, the transformation of a word.
Return the number of different transformations among all words we have.
Input: words = ["gin", "zen", "gig", "msg"]
Output: 2
Explanation:
The transformation of each word is:
"gin" -> "--...-."
"zen" -> "--...-."
"gig" -> "--...--."
"msg" -> "--...--."
There are 2 different transformations, "--...-." and "--...--.".