-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
161 lines (154 loc) · 7.38 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import torch.utils.data as data
import torchvision.transforms as transforms
import os
import random
from other_tools.dataloader import read_images, read_points, resample_pcd
#from utils import *
class ShapeNet(data.Dataset):
def __init__(self,
train=True,
npoints=['2048', '4096'],
dataset_name='shapenet'):
self.dataset = dataset_name
if train:
if self.dataset == 'suncg':
self.list_path = './list_pcd/train_suncg.list'
elif self.dataset == 'fusion':
self.list_path = './list_pcd/train_fusion.list'
elif self.dataset == '3rscan':
self.list_path = './list_pcd/train_3rscan.list'
elif self.dataset == 'eye':
self.list_path = './list_pcd/train_eye.list'
elif self.dataset == 'shapenet':
self.list_path = './list_pcd/train_shapenet.list'
else:
if self.dataset == 'suncg':
self.list_path = './list_pcd/valid_suncg.list'
elif self.dataset == 'fusion':
self.list_path = './list_pcd/test_fusion.list'
elif self.dataset == '3rscan':
self.list_path = './list_pcd/valid_3rscan.list'
elif self.dataset == 'eye':
self.list_path = './list_pcd/test_eye.list'
elif self.dataset == 'shapenet':
self.list_path = './list_pcd/valid_shapenet.list'
self.npoints = npoints
self.train = train
with open(os.path.join(self.list_path)) as file:
self.model_list = [line.strip().replace('/', '/') for line in file]
random.shuffle(self.model_list)
self.len = len(self.model_list)
def __getitem__(self, index):
model_id = self.model_list[index]
scan_id = index
if self.train:
if self.dataset == 'suncg':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/SUNCG_Yida/train/pcd_partial/",
'%s.pcd' % model_id), self.dataset)
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/SUNCG_Yida/train/pcd_complete/",
'%s.pcd' % model_id), self.dataset)
elif self.dataset == 'fusion':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/050_200/train/pcd_partial/",
'%s.pcd' % model_id), self.dataset)
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/050_200/train/pcd_complete/",
'%s.pcd' % model_id), self.dataset)
elif self.dataset == '3rscan':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/3RSCAN/train/partial/",
'%s.ply' % model_id), self.dataset)
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/3RSCAN/train/complete/",
'%s.ply' % model_id), self.dataset)
elif self.dataset == 'eye':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/eye_fb/train/partial/",
'%s.ply' % model_id), self.dataset)
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/eye_fb/train/complete/",
'%s.ply' % model_id), self.dataset)
images = []
elif self.dataset == 'shapenet':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/shapenet/train/partial/",
'%s.h5' % model_id), self.dataset)
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/shapenet/train/gt/",
'%s.h5' % model_id), self.dataset)
images = read_images(model_id)[:, :, :, :3]
else:
if self.dataset == 'suncg':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/SUNCG_Yida/test/pcd_partial/",
'%s.pcd' % model_id))
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/SUNCG_Yida/test/pcd_complete/",
'%s.pcd' % model_id), self.dataset)
elif self.dataset == 'fusion':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/050_200/test/pcd_partial/",
'%s.pcd' % model_id))
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/050_200/test/pcd_complete/",
'%s.pcd' % model_id), self.dataset)
elif self.dataset == '3rscan':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/3RSCAN/test/partial/",
'%s.ply' % model_id))
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/3RSCAN/test/complete/",
'%s.ply' % model_id), self.dataset)
elif self.dataset == 'eye':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/eye_fb/test/partial/",
'%s.ply' % model_id))
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/eye_fb/test/complete/",
'%s.ply' % model_id), self.dataset)
images = []
elif self.dataset == 'shapenet':
part, part_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/shapenet/val/partial/",
'%s.h5' % model_id), self.dataset)
comp, comp_color = read_points(
os.path.join(
"/media/wangyida/HDD/database/shapenet/val/gt/",
'%s.h5' % model_id), self.dataset)
images = read_images(model_id)[:, :, :, :3]
part_sampled, idx_sampled = resample_pcd(part, int(self.npoints[0]))
part_seg = np.round(part_color[idx_sampled] * 11)
comp_sampled, idx_sampled = resample_pcd(comp, int(self.npoints[1]))
comp_seg = np.round(comp_color[idx_sampled] * 11)
"""
comp_seg = []
for i in range (1, 12):
import ipdb; ipdb.set_trace()
comp_seg.append(resample_pcd(comp_sampled[comp_color == i], 512))
"""
# images = images[:, 52: 52+32, 52: 52+32, :]
return model_id, part_sampled, comp_sampled, part_seg, comp_seg, images
def __len__(self):
return self.len