forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
130 lines (112 loc) · 4.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import time
import logging
import argparse
import numpy as np
import paddle.fluid as fluid
from config import *
import models
from datareader import get_reader
from metrics import get_metrics
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
type=str,
default='AttentionCluster',
help='name of model to train.')
parser.add_argument(
'--config',
type=str,
default='configs/attention_cluster.txt',
help='path to config file of model')
parser.add_argument(
'--batch_size',
type=int,
default=None,
help='test batch size. None to use config file setting.')
parser.add_argument(
'--use_gpu', type=bool, default=True, help='default use gpu.')
parser.add_argument(
'--weights',
type=str,
default=None,
help='weight path, None to use weights from Paddle.')
parser.add_argument(
'--log_interval',
type=int,
default=1,
help='mini-batch interval to log.')
args = parser.parse_args()
return args
def test(args):
# parse config
config = parse_config(args.config)
test_config = merge_configs(config, 'test', vars(args))
print_configs(test_config, "Test")
# build model
test_model = models.get_model(args.model_name, test_config, mode='test')
test_model.build_input(use_pyreader=False)
test_model.build_model()
test_feeds = test_model.feeds()
test_outputs = test_model.outputs()
test_loss = test_model.loss()
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
if args.weights:
assert os.path.exists(
args.weights), "Given weight dir {} not exist.".format(args.weights)
weights = args.weights or test_model.get_weights()
test_model.load_test_weights(exe, weights,
fluid.default_main_program(), place)
# get reader and metrics
test_reader = get_reader(args.model_name.upper(), 'test', test_config)
test_metrics = get_metrics(args.model_name.upper(), 'test', test_config)
test_feeder = fluid.DataFeeder(place=place, feed_list=test_feeds)
if test_loss is None:
fetch_list = [x.name for x in test_outputs] + [test_feeds[-1].name]
else:
fetch_list = [test_loss.name] + [x.name for x in test_outputs
] + [test_feeds[-1].name]
epoch_period = []
for test_iter, data in enumerate(test_reader()):
cur_time = time.time()
test_outs = exe.run(fetch_list=fetch_list, feed=test_feeder.feed(data))
period = time.time() - cur_time
epoch_period.append(period)
if test_loss is None:
loss = np.zeros(1, ).astype('float32')
pred = np.array(test_outs[0])
label = np.array(test_outs[-1])
else:
loss = np.array(test_outs[0])
pred = np.array(test_outs[1])
label = np.array(test_outs[-1])
test_metrics.accumulate(loss, pred, label)
# metric here
if args.log_interval > 0 and test_iter % args.log_interval == 0:
info_str = '[EVAL] Batch {}'.format(test_iter)
test_metrics.calculate_and_log_out(loss, pred, label, info_str)
test_metrics.finalize_and_log_out("[EVAL] eval finished. ")
if __name__ == "__main__":
args = parse_args()
logger.info(args)
test(args)