-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaxwell_Demon_NVE.py
169 lines (142 loc) · 6.42 KB
/
Maxwell_Demon_NVE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import matplotlib.pyplot as plt
import quantity as qt
import os
N = 128 #number of simulation particles
dt = 0.001 #simulation time period
total_steps=3000 #total steps in simulation
L = 20 #length of the box
a = 1 #length of the Maxwell demon's door
radium = 0.1 #the size of a particle
total_energy = 100 #total energy for microcanonical ensemble
vmax = 0.4 #maximum velocity of a particle in initialization
epsilon = -0.0077*(1.602E-19) #ε in L-J potential(SI)
sigma = 4.5 #σ in L-J potential(SI)
m = 39.948E-27/6.02 #mass of the particle(SI)
kB = 1.38E-23 #Boltzmann constant(SI)
# initialize particle position as randomly distributed particles in a 3D box
def initializePosition(N):
position = np.zeros((N, 3))
for i in range(N):
position[i] = np.random.uniform(0,L,3)
return position
# initialize particle velocity as randomly distributed between (-vmax, vmax)
def initializeVelocity(N):
velocity = np.zeros((N, 3))
for i in range(N):
velocity[i] = np.random.uniform(-vmax, vmax, 3)
vc = velocity.sum(axis=0) # central mass velocity
for i in range(N):
velocity[i] = velocity[i] - vc #calculate and later rescale velocity in the coordinate of central mass
return velocity
def indoor(position):
# position is the info of a single particle, size = [3]
if (L - radium)/2 < position[0] < (L + radium)/2 and (L - a)/2 < position[1] < (L + a) / 2 and (L - a)/2 < position[2] < (L + a)/2:
return True
return False
# Judge wether particle meet the Maxwell Demon's door
def MaxwellDemon_judgeparticle(position, velocity, N):
# The method that Maxwell Demon judge whether a particle can pass is by compare its velocity with average one
# If the particle is in the box in the center, it will be judged by the Maxwell Demon, if the velocity is larger than average, it will be bounded
velocity_abs = np.zeros(N)
for i in range(N):
velocity_abs[i] = np.sqrt(velocity[i, 0] ** 2 + velocity[i, 1] ** 2 + velocity[i, 2] ** 2)
velocity_abs_average = np.average(velocity_abs)
for i in range(N):
if velocity_abs[i] < velocity_abs_average and velocity[i, 0] > 0 and indoor(position[i, :]):
velocity[i, 0] = - velocity[i, 0]
elif velocity_abs[i] > velocity_abs_average and velocity[i, 0] < 0 and indoor(position[i, :]):
velocity[i, 0] = - velocity[i, 0]
return velocity
def Boundary_bounce_particle(position, velocity, N):
for i in range(N):
if position[i, 0] < radium or L - position[i, 0] < radium:
velocity[i, 0] = - velocity[i, 0]
if position[i, 1] < radium or L - position[i, 1] < radium:
velocity[i, 1] = - velocity[i, 1]
if position[i, 2] < radium or L - position[i, 2] < radium:
velocity[i, 2] = - velocity[i, 2]
return velocity
#compute the accelarations of each particle at given position based on L-J potential
def computeAccelerations(position,N):
acceleration = np.zeros((N, 3))
f = np.zeros((N,3))
ri = []
for i in range(N):
for j in range(N):
for k in range(3):
x0 = position[i, k]
x = position[j,k]
ri.append((x-x0)**2)
r = np.sqrt(sum(ri))
for k in range(3):
x0 = position[i, k]
x = position[j,k]
if i == j:
f[j, k] = 0
else:
f[j,k] = (x0 - x) * ((sigma / r) ** 14 - 0.5 * (sigma / r) ** 8)
for k in range(3):
acceleration[i] = 48 * (epsilon / sigma) ** 2 * f.sum(axis=0)
return acceleration
#Compute the position of particles using Verlet method
def computePosition(position, velocity, acceleration, dt, L):
nextPosition = position + velocity*dt + 0.5*acceleration*(dt**2)
return nextPosition
#Compute the velocity of particles using Verlet method
def computeVelocity(position, velocity, acceleration, dt,N):
r_nextdt = computePosition(position, velocity, acceleration, dt, L)
a_nextdt = computeAccelerations(r_nextdt, N)
return MaxwellDemon_judgeparticle(r_nextdt, Boundary_bounce_particle(r_nextdt, velocity + 0.5*(acceleration+a_nextdt)*dt, N), N)
def instaneousTemperature(v,N):
vsqr = []
for i in range(N):
for k in range(3):
vsqr.append(v[i,k]*v[i,k])
return sum(vsqr)*m/(3*(N-1)*kB)
def computePotentialEnergy(position,N):
potential_energy = 0
for i in range(N):
for j in range(N):
ri = []
for k in range(3):
x0 = position[i, k]
x = position[j, k]
ri.append((x - x0) ** 2)
r = np.sqrt(sum(ri))
if i == j :
potential_energy = potential_energy
else:
potential_energy = potential_energy + 4*epsilon*((sigma/r)**12-(sigma/r)**6)
potential_energy = 0.5 * potential_energy
return potential_energy
#use a scaler to maintain a constant total energy in microcanonical ensemble
def rescaleVelocity(v,position,N):
potential_energy_total = computePotentialEnergy(position,N)
vSqdSum = 0
T = instaneousTemperature(v,N)
for i in range(N):
for k in range(3):
vSqdSum = vSqdSum + v[i,k]*v[i,k]
lamda = np.sqrt(2*(total_energy - potential_energy_total)/ (vSqdSum * m))
for i in range(N):
for k in range(3):
v[i,k] = lamda * v[i,k]
return v
######-------------main loop starts here------------------######
### This loop will return two matrix position_output and velocity_output
### Each column records the nth step of the simulation result
### Each row records the position or velocity in three directions of the Nth particle
#0 Initialization
position_output = [initializePosition(N)]
velocity_output = [initializeVelocity(N)]
acceleration = computeAccelerations(position_output[0],N)
#1 The simulation loop. Judge whether the system has reached the equilibrium state or not after visualization
for i in range(total_steps):
position_original = computePosition(position_output[i], velocity_output[i], acceleration[i], dt, L)
position_output.append(position_original)
velocity_original = computeVelocity(position_output[i], velocity_output[i], acceleration[i], dt,N)
if i%50==0: #rescale velocites every 50 steps
velocity_output.append(rescaleVelocity(velocity_original,position_original,N))
else:
velocity_output.append(velocity_original)