-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathrun_bi_lstm.py
130 lines (121 loc) · 7.07 KB
/
run_bi_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
"""
running bi-lstm for short text classification
"""
import os
import tensorflow as tf
import shutil
from utils.classifier_utils import TextLoader
from models.bilstm import BiLSTM
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("train_path", None, "dir for train data")
flags.DEFINE_string("valid_path", None, "dir for valid data")
flags.DEFINE_string("map_file_path", None, "dir for label std question mapping")
flags.DEFINE_string("model_path", None, "dir for save checkpoint data")
# flags.DEFINE_string("result_file", None, "file for valid result")
flags.DEFINE_string("vocab_file", None, "file for vocab")
flags.DEFINE_string("label_file", None, "file for label")
flags.DEFINE_integer("embedding_size", 256, "size of word embedding")
flags.DEFINE_integer("num_units", 256, "The number of units in the LSTM cell")
flags.DEFINE_integer("vocab_size", 256, "The size of vocab")
flags.DEFINE_integer("label_size", 256, "The num of label")
flags.DEFINE_integer("batch_size", 128, "batch_size of train data")
flags.DEFINE_integer("seq_length", 50, "the length of sequence")
flags.DEFINE_integer("num_epcho", 30, "the epcho num")
flags.DEFINE_integer("check_every", 100, "the epcho num")
flags.DEFINE_integer("lstm_layers", 2, "the layers of lstm")
flags.DEFINE_float("lr", 0.001, "learning rate")
flags.DEFINE_float("dropout_keep_prob", 0.8, "drop_out keep prob")
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
data_loader = TextLoader(True, FLAGS.train_path, FLAGS.map_file_path, FLAGS.batch_size, FLAGS.seq_length, None,
None, None, 'utf8', False)
valid_data_loader = TextLoader(False, FLAGS.valid_path, FLAGS.map_file_path, FLAGS.batch_size, FLAGS.seq_length,
data_loader.vocab,
data_loader.labels, data_loader.std_label_map, 'utf8', False)
tf.logging.info("vocab_size: " + str(data_loader.vocab_size))
FLAGS.vocab_size = data_loader.vocab_size
tf.logging.info("label_size: " + str(data_loader.label_size))
FLAGS.label_size = data_loader.label_size
bilstm = BiLSTM(FLAGS)
init = tf.global_variables_initializer()
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(init)
idx = 0
test_best_acc = 0
for epcho in range(FLAGS.num_epcho): # for each epoch
data_loader.reset_batch_pointer()
for train_batch_num in range(data_loader.num_batches): # for each batch
input_x, input_y, x_len, _ = data_loader.next_batch()
feed = {bilstm.input_x: input_x, bilstm.input_y: input_y, bilstm.x_len: x_len,
bilstm.dropout_keep_prob: FLAGS.dropout_keep_prob}
_, global_step_op, train_loss, train_acc = sess.run(
[bilstm.train_step, bilstm.global_step, bilstm.loss, bilstm.acc], feed_dict=feed)
tf.logging.info("training...........global_step = {}, epoch = {}, current_batch = {}, "
"train_loss = {:.4f}, accuracy = {:.4f}".format(global_step_op, epcho, train_batch_num,
train_loss, train_acc))
idx += 1
if idx % FLAGS.check_every == 0:
all_num = 0
acc_num = 0
valid_data_loader.reset_batch_pointer()
write_result = []
for _ in range(valid_data_loader.num_batches):
input_x_valid, input_y_valid, x_len_valid, _ = valid_data_loader.next_batch()
feed = {bilstm.input_x: input_x_valid, bilstm.input_y: input_y_valid, bilstm.x_len: x_len_valid,
bilstm.dropout_keep_prob: 1.0}
prediction, arg_index = sess.run([bilstm.prediction, bilstm.arg_index], feed_dict=feed)
all_num = all_num + len(input_y_valid)
# write_str = ""
for i, indexs in enumerate(arg_index):
pre_label_id = indexs[0]
real_label_id = input_y_valid[i]
if pre_label_id == real_label_id:
acc_num = acc_num + 1
# if real_label_id in valid_data_loader.id_2_label:
# write_str = valid_data_loader.id_2_label.get(real_label_id)
# else:
# write_str = "__label__unknown"
# for index in indexs:
# cur_label = valid_data_loader.id_2_label.get(index)
# cur_score = prediction[i][index]
# write_str = write_str + " " + cur_label + ":" + str(cur_score)
# write_str = write_str + "\n"
# write_result.append(write_str)
test_acc = acc_num * 1.0 / all_num
tf.logging.info(
"testing...........global_step = {}, epoch = {}, accuracy = {:.4f}, cur_best_acc = {}".format(
global_step_op, epcho, test_acc, test_best_acc))
if test_best_acc < test_acc:
test_best_acc = test_acc
# save_model
if not os.path.exists(FLAGS.model_path):
os.makedirs(FLAGS.model_path)
checkpoint_path = os.path.join(FLAGS.model_path, 'lstm_model')
bilstm.saver.save(sess, checkpoint_path, global_step=global_step_op)
# export model
export_path = os.path.join(FLAGS.model_path, 'lstm_tf_serving')
if os.path.isdir(export_path):
shutil.rmtree(export_path)
bilstm.export_model(export_path, sess)
# resultfile = open(FLAGS.result_file, 'w', encoding='utf-8')
# for pre_sen in write_result:
# resultfile.write(pre_sen)
tf.logging.info(
"has saved model and write.result...................................................................")
# resultfile.close()
# save label and vocab
vocabfile = open(FLAGS.vocab_file, 'w', encoding='utf-8')
for key, value in data_loader.vocab.items():
vocabfile.write(str(key) + "\t" + str(value) + '\n')
vocabfile.close()
labelfile = open(FLAGS.label_file, 'w', encoding='utf-8')
for key, value in data_loader.labels.items():
labelfile.write(str(key) + "\t" + str(value) + '\n')
labelfile.close()
# break
if __name__ == "__main__":
tf.app.run()