-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
88 lines (76 loc) · 3.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import numpy as np
from dataset import get_image_path, load_image, normalize
import torch
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader, TensorDataset
from torchvision.utils import save_image
from model import VAE
from tqdm import tqdm
import random
def get_train_loader(batch_size, train_num):
'''
Read images and prepare dataloader for training.
'''
image_paths = get_image_path('dataset')
X_train = TensorDataset(torch.from_numpy(load_image(image_paths[:train_num])))
train_loader = DataLoader(X_train, batch_size=batch_size, shuffle=True)
return train_loader
def test_reconstruct(batch_size, num_batches, pretrained, shuffle=False):
'''
Save reconstructed images from randomly picked batches.
'''
if not os.path.exists('reconstResult'):
os.makedirs('reconstResult')
image_paths = get_image_path('dataset')
X_test = TensorDataset(torch.from_numpy(load_image(image_paths[8000:12000])))
test_loader = DataLoader(X_test, batch_size=batch_size, shuffle=shuffle)
vae = VAE(3, 256)
vae.load_state_dict(torch.load(pretrained, map_location={'cuda:1': 'cpu'}))
for i, img in enumerate(test_loader):
img = img[0]
reconst_img = vae.reconstruct(img)
concat_img = torch.cat([img, reconst_img], dim=3)
save_image(concat_img, f'reconstResult/reconstruct_{i}.png')
# save_image(img, f'original_{i}.png')
# save_image(reconst_img, f'reconst_{i}.png')
if i == num_batches - 1:
break
def gen_feature_fusion(x, y, alpha, pretrained):
'''
Generated new images from linear interpolation of latent features.
'''
vae = VAE(3, 256)
vae.load_state_dict(torch.load(pretrained, map_location={'cuda:1': 'cpu'}))
z1, z2 = vae.get_z(x), vae.get_z(y)
z_mix = z1 * alpha + z2 * (1 - alpha)
out = vae.generate_from_z(z_mix)
return out
def test_generation(batch_size, num_batches, pretrained):
if not os.path.exists('fusionResult'):
os.makedirs('fusionResult')
image_paths = get_image_path('dataset')
X_test = TensorDataset(torch.from_numpy(load_image(image_paths[3000:8000])))
test_loader = DataLoader(X_test, batch_size=batch_size, shuffle=True)
loader_iter = iter(test_loader)
for k in range(num_batches):
X = next(loader_iter)[0]
Y = next(loader_iter)[0]
im_show = Y
# feature fusion
for i in range(11):
alpha = i / 10
new_img = gen_feature_fusion(X, Y, alpha, pretrained)
im_show = torch.cat([im_show, new_img], dim=3)
im_show = torch.cat([im_show, X], dim=3)
save_image(im_show, f'fusionResult/fusion_{k}.png', nrow=1)
if __name__ == '__main__':
pretrained = 'pretrained/05-23_01_02-1000.pt'
# randomly chosen batches of reconstructed images will be saved in ./reconstResult
print('Start reconstructing...')
test_reconstruct(batch_size=64, num_batches=3, pretrained=pretrained)
# randomly chosen batches of fused images will be saved in ./fusionResult
print('Done!')
print('Start genrating, and this may take a while...')
test_generation(batch_size=8, num_batches=3, pretrained=pretrained)
print('Done!')