forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmot_keypoint_unite_infer.py
317 lines (278 loc) · 11.6 KB
/
mot_keypoint_unite_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import math
import copy
import numpy as np
from collections import defaultdict
import paddle
from utils import get_current_memory_mb
from infer import Detector, PredictConfig, print_arguments, get_test_images
from visualize import draw_pose
from mot_keypoint_unite_utils import argsparser
from keypoint_infer import KeyPoint_Detector, PredictConfig_KeyPoint
from det_keypoint_unite_infer import predict_with_given_det, bench_log
from mot_jde_infer import JDE_Detector
from ppdet.modeling.mot.visualization import plot_tracking_dict
from ppdet.modeling.mot.utils import MOTTimer as FPSTimer
from ppdet.modeling.mot.utils import write_mot_results
# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
'HigherHRNet': 'keypoint_bottomup',
'HRNet': 'keypoint_topdown'
}
def convert_mot_to_det(tlwhs, scores):
results = {}
num_mot = len(tlwhs)
xyxys = copy.deepcopy(tlwhs)
for xyxy in xyxys.copy():
xyxy[2:] = xyxy[2:] + xyxy[:2]
# support single class now
results['boxes'] = np.vstack(
[np.hstack([0, scores[i], xyxys[i]]) for i in range(num_mot)])
return results
def mot_keypoint_unite_predict_image(mot_model,
keypoint_model,
image_list,
keypoint_batch_size=1):
num_classes = mot_model.num_classes
assert num_classes == 1, 'Only one category mot model supported for uniting keypoint deploy.'
data_type = 'mot'
image_list.sort()
for i, img_file in enumerate(image_list):
frame = cv2.imread(img_file)
if FLAGS.run_benchmark:
# warmup
online_tlwhs, online_scores, online_ids = mot_model.predict(
[frame], FLAGS.mot_threshold, repeats=10, add_timer=False)
# run benchmark
online_tlwhs, online_scores, online_ids = mot_model.predict(
[frame], FLAGS.mot_threshold, repeats=10, add_timer=True)
cm, gm, gu = get_current_memory_mb()
mot_model.cpu_mem += cm
mot_model.gpu_mem += gm
mot_model.gpu_util += gu
else:
online_tlwhs, online_scores, online_ids = mot_model.predict(
[frame], FLAGS.mot_threshold)
keypoint_arch = keypoint_model.pred_config.arch
if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown':
results = convert_mot_to_det(online_tlwhs, online_scores)
keypoint_results = predict_with_given_det(
frame, results, keypoint_model, keypoint_batch_size,
FLAGS.mot_threshold, FLAGS.keypoint_threshold,
FLAGS.run_benchmark)
else:
if FLAGS.run_benchmark:
keypoint_results = keypoint_model.predict(
[frame],
FLAGS.keypoint_threshold,
repeats=10,
add_timer=False)
repeats = 10 if FLAGS.run_benchmark else 1
keypoint_results = keypoint_model.predict(
[frame], FLAGS.keypoint_threshold, repeats=repeats)
if FLAGS.run_benchmark:
cm, gm, gu = get_current_memory_mb()
keypoint_model.cpu_mem += cm
keypoint_model.gpu_mem += gm
keypoint_model.gpu_util += gu
else:
im = draw_pose(
frame,
keypoint_results,
visual_thread=FLAGS.keypoint_threshold,
returnimg=True,
ids=online_ids[0]
if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown'
else None)
online_im = plot_tracking_dict(
im,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=i)
if FLAGS.save_images:
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
img_name = os.path.split(img_file)[-1]
out_path = os.path.join(FLAGS.output_dir, img_name)
cv2.imwrite(out_path, online_im)
print("save result to: " + out_path)
def mot_keypoint_unite_predict_video(mot_model,
keypoint_model,
camera_id,
keypoint_batch_size=1):
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
video_name = 'output.mp4'
else:
capture = cv2.VideoCapture(FLAGS.video_file)
video_name = os.path.split(FLAGS.video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
out_path = os.path.join(FLAGS.output_dir, video_name)
if not FLAGS.save_images:
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 0
timer_mot = FPSTimer()
timer_kp = FPSTimer()
timer_mot_kp = FPSTimer()
# support single class and multi classes, but should be single class here
mot_results = defaultdict(list)
num_classes = mot_model.num_classes
assert num_classes == 1, 'Only one category mot model supported for uniting keypoint deploy.'
data_type = 'mot'
while (1):
ret, frame = capture.read()
if not ret:
break
timer_mot_kp.tic()
timer_mot.tic()
online_tlwhs, online_scores, online_ids = mot_model.predict(
[frame], FLAGS.mot_threshold)
timer_mot.toc()
mot_results[0].append(
(frame_id + 1, online_tlwhs[0], online_scores[0], online_ids[0]))
mot_fps = 1. / timer_mot.average_time
timer_kp.tic()
keypoint_arch = keypoint_model.pred_config.arch
if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown':
results = convert_mot_to_det(online_tlwhs[0], online_scores[0])
keypoint_results = predict_with_given_det(
frame, results, keypoint_model, keypoint_batch_size,
FLAGS.mot_threshold, FLAGS.keypoint_threshold,
FLAGS.run_benchmark)
else:
keypoint_results = keypoint_model.predict([frame],
FLAGS.keypoint_threshold)
timer_kp.toc()
timer_mot_kp.toc()
kp_fps = 1. / timer_kp.average_time
mot_kp_fps = 1. / timer_mot_kp.average_time
im = draw_pose(
frame,
keypoint_results,
visual_thread=FLAGS.keypoint_threshold,
returnimg=True,
ids=online_ids[0]
if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown' else
None)
online_im = plot_tracking_dict(
im,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=mot_kp_fps)
im = np.array(online_im)
frame_id += 1
print('detect frame: %d' % (frame_id))
if FLAGS.save_images:
save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
else:
writer.write(im)
if camera_id != -1:
cv2.imshow('Tracking and keypoint results', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if FLAGS.save_mot_txts:
result_filename = os.path.join(FLAGS.output_dir,
video_name.split('.')[-2] + '.txt')
write_mot_results(result_filename, mot_results, data_type, num_classes)
if FLAGS.save_images:
save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
out_path)
os.system(cmd_str)
print('Save video in {}.'.format(out_path))
else:
writer.release()
def main():
pred_config = PredictConfig(FLAGS.mot_model_dir)
mot_model = JDE_Detector(
pred_config,
FLAGS.mot_model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn)
pred_config = PredictConfig_KeyPoint(FLAGS.keypoint_model_dir)
keypoint_model = KeyPoint_Detector(
pred_config,
FLAGS.keypoint_model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=FLAGS.keypoint_batch_size,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
use_dark=FLAGS.use_dark)
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
mot_keypoint_unite_predict_video(mot_model, keypoint_model,
FLAGS.camera_id,
FLAGS.keypoint_batch_size)
else:
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
mot_keypoint_unite_predict_image(mot_model, keypoint_model, img_list,
FLAGS.keypoint_batch_size)
if not FLAGS.run_benchmark:
mot_model.det_times.info(average=True)
keypoint_model.det_times.info(average=True)
else:
mode = FLAGS.run_mode
mot_model_dir = FLAGS.mot_model_dir
mot_model_info = {
'model_name': mot_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(mot_model, img_list, mot_model_info, name='MOT')
keypoint_model_dir = FLAGS.keypoint_model_dir
keypoint_model_info = {
'model_name': keypoint_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(keypoint_model, img_list, keypoint_model_info, 'KeyPoint')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU'
], "device should be CPU, GPU or XPU"
main()