Skip to content

Latest commit

 

History

History
95 lines (84 loc) · 2.83 KB

File metadata and controls

95 lines (84 loc) · 2.83 KB

Tensorrt-int8-quantization-pipline

a simple pipline of int8 quantization based on tensorrt.
classification detection

Example for classification

cd classification

1、Choose a model and prepare a calibration dataset,like resnet101 training from imagenet1k.

wget https://hanlab.mit.edu/files/OnceForAll/ofa_cvpr_tutorial/imagenet_1k.zip
unzip 'imagenet_1k.zip'
mkdir model

2、eval the float32 model performance.

python test_torch.py

3、convert to onnx model.

python torch2onnx.py

4、 quantization int8 trt model.

python quantization.py

5、eval the int8 model performance.

python test_int8trt.py

or run a pipline including the above steps.

python tensorrt_PTA_classification_pipline.py

model accuracy time size
float32(pth) 0.759 0.0799 171M
int8(trt) 0.738 0.0013 44M

Note

You can replace resnet101 with your network. If your dataset structure is different, you need to modify some code about dataset.

# test_torch.py torch2onnx.py quantization.py
if __name__ == "__main__":
    net = models.resnet101(pretrained=True).to('cpu')

or

# tensorrt_PTA_classification_pipline.py
if __name__ == "__main__":
    net = models.resnet101(pretrained=True).to('cpu')

Example for detection

cd detection

1、Choose a model and test inference,like YOLOX-s.

wget wget https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s.onnx
python demo_onnx.py --model_path yolox_s.onnx --label_name_path coco.label --image_path dog.jpg --output_path output_onnx.jpg

2、random sample 2k training images as calibration data, YOLOX-s training from COCO2017.

mkdir calibration
python sample.py --traing_data_path your_path/coco/images/train2017/  --count 2000 --calibration_path ./calibration/

3、quantization

python3 -m onnxsim yolox_s.onnx yolox_s.onnx
python quantization.py

4、test int tensort model

python demo_trt.py --model_path modelInt8.engine --label_name_path coco.label --image_path dog.jpg --output_path output_trt.jpg
model time size
float32(pth) 0.0064 35M
int8(trt) 0.0025 9.2M
float32 onnx int8 tensorrt

TO DO

  • example for detection.
  • example for segmention.