Skip to content

Latest commit

 

History

History
32 lines (28 loc) · 1.92 KB

README.md

File metadata and controls

32 lines (28 loc) · 1.92 KB

mindnlp-QNLI

A repository comparing the inference accuracy of MindNLP and Transformer on the GLUE QNLI dataset

Quick Start

Installation

To get started with mindnlp-QNLI, follow these steps:

  1. Clone the repository:
    git clone https://github.com/xuhangscut/mindnlp-qnli.git
  2. Create a conda environment (optional but recommended):
    conda create -n mindnlp python==3.9
    conda activate mindnlp
  3. Install the dependencies: Please note that mindnlp is in the Ascend environment, while transformers is in the GPU environment, and the required dependencies are in the requirements of their respective folders.
    cd mindnlp #or cd transformers
    pip install -r requirements.txt
  4. Usage Once the installation is complete, you can choose use differnet models to start inference. Here's how to run the inference:
    python bart-qnli.py

Accuracy Comparsion

Model Name bart bert roberta xlm-roberta gpt2 t5 distilbert albert opt llama
Base Model facebook/bart-base google-bert/bert-base-uncased FacebookAI/roberta-large FacebookAI/xlm-roberta-large openai-community/gpt2 google-t5/t5-small distilbert/distilbert-base-uncased albert/albert-base-v2 facebook/opt-125m JackFram/llama-160m
Fine-tuned Model(hf) ModelTC/bart-base-qnli Li/bert-base-uncased-qnli howey/roberta-large-qnli tmnam20/xlm-roberta-large-qnli-1 tanganke/gpt2_qnli lightsout19/t5-small-qnli anirudh21/distilbert-base-uncased-finetuned-qnli orafandina/albert-base-v2-finetuned-qnli utahnlp/qnli_facebook_opt-125m_seed-1 Cheng98/llama-160m-qnli
transformers accuracy(GPU) 92.29 67.43 94.50 92.50 88.15 89.71 59.21 55.14 86.10 50.97
mindnlp accuracy(NPU) 92.29 67.43 94.51 92.50 88.15 89.71 59.23 55.13 86.10 50.97