-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
377 lines (306 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import time
import argparse
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from models import get_model
from utils.loss import GeodesicLoss, GeodesicAndFrobeniusLoss
from utils.datasets import Pose300W, AFLW2000
from utils.general import (
LOGGER,
setup_seed,
reduce_tensor,
save_on_master,
init_distributed_mode,
AverageMeter,
EarlyStopping,
compute_euler_angles_from_rotation_matrices
)
def parse_args():
"""head pose estimation training arguments"""
parser = argparse.ArgumentParser(description='Head pose estimation training.')
# Dataset and data paths
parser.add_argument('--data', type=str, default='data', help='Directory path for data.')
# Model and training configuration
parser.add_argument('--epochs', type=int, default=80, help='Maximum number of training epochs.')
parser.add_argument('--batch-size', type=int, default=128, help='Batch size.')
parser.add_argument(
"--network",
type=str,
default="resnet18",
help="Network architecture, currently available: resnet18/34/50, mobilenetv2"
)
parser.add_argument('--lr', type=float, default=0.0001, help='Base learning rate.')
parser.add_argument("--num-workers", type=int, default=8, help="Number of workers for data loading.")
parser.add_argument("--checkpoint", type=str, default=None, help="Path to checkpoint to continue training.")
# lr_scheduler configuration
parser.add_argument(
'--lr-scheduler',
type=str,
default='MultiStepLR',
choices=['StepLR', 'MultiStepLR'],
help='Learning rate scheduler type.'
)
parser.add_argument('--step-size', type=int, default=10, help='Period of learning rate decay for StepLR.')
parser.add_argument(
'--gamma',
type=float,
default=0.5,
help='Multiplicative factor of learning rate decay for StepLR and ExponentialLR.'
)
parser.add_argument(
'--milestones',
type=int,
nargs='+',
default=[10, 20],
help='List of epoch indices to reduce learning rate for MultiStepLR (ignored if StepLR is used).'
)
parser.add_argument(
'--print-freq',
type=int,
default=100,
help='Frequency (in batches) for printing training progress. Default: 100.'
)
parser.add_argument("--world-size", default=1, type=int, help="Number of distributed processes")
parser.add_argument('--local-rank', type=int, default=0, help='Local rank for distributed training')
# Output path
parser.add_argument(
'--save-path',
type=str,
default='weights',
help='Path to save model checkpoints. Default: `weights`.'
)
return parser.parse_args()
def load_data(train_dir, eval_dir, params):
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=224, scale=(0.8, 1)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
eval_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
LOGGER.info("Loading training data...")
train_dataset = Pose300W(train_dir, transform=train_transform)
LOGGER.info("Loading evaluation data...")
eval_dataset = AFLW2000(eval_dir, transform=eval_transform)
if params.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(eval_dataset)
else:
train_sampler = torch.utils.data.RandomSampler(train_dataset)
test_sampler = torch.utils.data.SequentialSampler(eval_dataset)
return train_dataset, eval_dataset, train_sampler, test_sampler
def train_one_epoch(
model,
criterion,
optimizer,
data_loader,
device,
epoch,
params
) -> None:
model.train()
losses = AverageMeter("Avg Loss", ":6.3f")
batch_time = AverageMeter("Batch Time", ":4.3f")
last_batch_idx = len(data_loader) - 1
start_time = time.time()
for batch_idx, (images, labels, _) in enumerate(data_loader):
last_batch = last_batch_idx == batch_idx
# Move data to device
images = images.to(device)
labels = labels.to(device)
# Reset gradients
optimizer.zero_grad()
# Forward pass
outputs = model(images)
# Calculate loss
loss = criterion(labels, outputs)
if params.distributed:
# reduce_tensor is used in distributed training to aggregate metrics (e.g., loss, accuracy)
# across multiple GPUs. It ensures all devices contribute to the final metric computation.
reduced_loss = reduce_tensor(loss, params.world_size)
else:
reduced_loss = loss
# Backward pass
loss.backward()
# Update model parameters
optimizer.step()
# Update metrics
losses.update(reduced_loss.item(), images.size(0))
batch_time.update(time.time() - start_time)
if device.type == 'cuda':
torch.cuda.synchronize()
# Reset start time for the next batch
start_time = time.time()
if batch_idx % params.print_freq == 0 or last_batch:
lr = optimizer.param_groups[0]['lr']
log = (
f'Epoch: [{epoch+1}/{params.epochs}][{batch_idx:04d}/{len(data_loader):04d}] '
f'Loss: {losses.avg:6.3f}, '
f'LR: {lr:.7f} '
f'Time: {batch_time.avg:4.3f}s'
)
LOGGER.info(log)
# End-of-epoch summary
log = (
f'Epoch: [{epoch+1}/{params.epochs}] Summary: '
f'Loss: {losses.avg:6.3f}, '
f'Total Time: {batch_time.sum:4.3f}s'
)
LOGGER.info(log)
@torch.no_grad()
def evaluate(params, model, data_loader, device):
model.eval()
total = 0
yaw_error = pitch_error = roll_error = 0.0
v1_err = v2_err = v3_err = 0.0
for images, r_label, cont_labels, name in data_loader:
images = images.to(device)
total += cont_labels.size(0)
R_gt = r_label
p_gt_deg = cont_labels[:, 0].float() * 180 / np.pi
y_gt_deg = cont_labels[:, 1].float() * 180 / np.pi
r_gt_deg = cont_labels[:, 2].float() * 180 / np.pi
R_pred = model(images)
euler = compute_euler_angles_from_rotation_matrices(R_pred) * 180 / np.pi
p_pred_deg = euler[:, 0].cpu()
y_pred_deg = euler[:, 1].cpu()
r_pred_deg = euler[:, 2].cpu()
R_pred = R_pred.cpu()
v1_err += torch.sum(torch.acos(torch.clamp(torch.sum(R_gt[:, 0] * R_pred[:, 0], dim=1), -1, 1)) * 180 / np.pi)
v2_err += torch.sum(torch.acos(torch.clamp(torch.sum(R_gt[:, 1] * R_pred[:, 1], dim=1), -1, 1)) * 180 / np.pi)
v3_err += torch.sum(torch.acos(torch.clamp(torch.sum(R_gt[:, 2] * R_pred[:, 2], dim=1), -1, 1)) * 180 / np.pi)
pitch_error += torch.sum(torch.min(torch.stack([
torch.abs(p_gt_deg - p_pred_deg),
torch.abs(p_pred_deg + 360 - p_gt_deg),
torch.abs(p_pred_deg - 360 - p_gt_deg),
torch.abs(p_pred_deg + 180 - p_gt_deg),
torch.abs(p_pred_deg - 180 - p_gt_deg)
]), dim=0)[0])
yaw_error += torch.sum(torch.min(torch.stack([
torch.abs(y_gt_deg - y_pred_deg),
torch.abs(y_pred_deg + 360 - y_gt_deg),
torch.abs(y_pred_deg - 360 - y_gt_deg),
torch.abs(y_pred_deg + 180 - y_gt_deg),
torch.abs(y_pred_deg - 180 - y_gt_deg)
]), dim=0)[0])
roll_error += torch.sum(torch.min(torch.stack([
torch.abs(r_gt_deg - r_pred_deg),
torch.abs(r_pred_deg + 360 - r_gt_deg),
torch.abs(r_pred_deg - 360 - r_gt_deg),
torch.abs(r_pred_deg + 180 - r_gt_deg),
torch.abs(r_pred_deg - 180 - r_gt_deg)
]), dim=0)[0])
LOGGER.info(
f'Yaw: {yaw_error / total:.4f} '
f'Pitch: {pitch_error / total:.4f} '
f'Roll: {roll_error / total:.4f} '
f'MAE: {(yaw_error + pitch_error + roll_error) / (total * 3):.4f}'
)
return (yaw_error + pitch_error + roll_error) / (total * 3)
def main(params):
setup_seed()
init_distributed_mode(params)
torch.backends.cudnn.benchmark = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
output_path = os.path.join(params.save_path, params.network)
os.makedirs(output_path, exist_ok=True)
model = get_model(params.network, num_classes=6, pretrained=True)
model.to(device)
model_without_ddp = model
if params.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[params.local_rank])
model_without_ddp = model.module
criterion = GeodesicLoss()
# criterion = GeodesicAndFrobeniusLoss()
optimizer = torch.optim.Adam(model.parameters(), params.lr)
# Learning rate scheduler
if params.lr_scheduler == 'MultiStepLR':
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=params.milestones, gamma=params.gamma)
elif params.lr_scheduler == 'StepLR':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=params.step_size, gamma=params.gamma)
else:
raise ValueError(f"Unsupported lr_scheduler type: {params.lr_scheduler}")
start_epoch = 0
if params.checkpoint and os.path.isfile(params.checkpoint):
ckpt = torch.load(params.checkpoint, map_location=device, weights_only=True)
model_without_ddp.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
lr_scheduler.load_state_dict(ckpt['lr_scheduler'])
# Move optimizer states to device
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
start_epoch = ckpt['epoch']
LOGGER.info(f'Resumed training from {params.checkpoint}, starting at epoch {start_epoch + 1}')
# Datasets and DataLoaders
train_dir = os.path.join(params.data, "300W_LP")
val_dir = os.path.join(params.data, "AFLW2000")
train_dataset, val_dataset, train_sampler, test_sampler = load_data(train_dir, val_dir, params)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=params.batch_size,
sampler=train_sampler,
num_workers=params.num_workers,
pin_memory=True
)
val_loader = torch.utils.data.DataLoader(
dataset=val_dataset,
batch_size=params.batch_size,
sampler=test_sampler,
num_workers=params.num_workers,
pin_memory=True
)
best_angular_error = float("inf")
mean_angular_error = float("inf")
early_stopping = EarlyStopping(patience=0)
LOGGER.info('Starting training.')
for epoch in range(start_epoch, params.epochs):
if params.distributed:
train_sampler.set_epoch(epoch)
train_one_epoch(
model=model,
criterion=criterion,
optimizer=optimizer,
data_loader=train_loader,
device=device,
epoch=epoch,
params=params,
)
lr_scheduler.step()
# Save the last checkpoint
checkpoint = {
'epoch': epoch + 1,
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': params
}
save_on_master(checkpoint, os.path.join(output_path, 'last_checkpoint.ckpt'))
if params.local_rank == 0:
mean_angular_error = evaluate(params, model_without_ddp, val_loader, device)
if early_stopping(epoch, mean_angular_error):
break
# Save the best checkpoint based on training loss
if mean_angular_error < best_angular_error:
best_angular_error = mean_angular_error
save_on_master(checkpoint, os.path.join(output_path, 'best_checkpoint.ckpt'))
LOGGER.info(
f"New best mean angular error: {best_angular_error:.4f}."
f"Model saved to {output_path} with `_best` postfix."
)
LOGGER.info(
f"Epoch {epoch + 1} completed. Latest model saved to {output_path} with `_last` postfix."
f"Best mean angular error: {best_angular_error:.4f}"
)
LOGGER.info('Training completed.')
if __name__ == '__main__':
args = parse_args()
main(args)