es6 javascript 尾调用
深入理解JavaScript中的尾调用(Tail Call)
尾调用是函数式编程里比较重要的一个概念,尾调用的概念非常简单, 一句话就能说清楚,它的意思是在函数的执行过程中,如果最后一个动作是一个函数的调用, 即这个调用的返回值被当前函数直接返回,则称为尾调用。
function f(x){
return g(x);
}
上面代码中,函数 f 的最后一步是调用函数 g ,这就叫尾调用。以下三种情况,都不属于尾调用。
// 情况一
function f(x){
let y = g(x);
return y;
}
// 情况二
function f(x){
return g(x) + 1;
}
// 情况三
function f(x){
g(x);
}
上面代码中,情况一是调用函数 g 之后,还有赋值操作,所以不属于尾调用,即使语义完全一样。情况二也属于调用后还有操作,即使写在一行内。情况三等同于下面的代码。
function f(x){
g(x);
return undefined;
}
尾调用不一定出现在函数尾部,只要是最后一步操作即可。
function f(x) {
if (x > 0) {
return m(x)
}
return n(x);
}
上面代码中,函数 m 和 n 都属于尾调用,因为它们都是函数 f 的最后一步操作。
尾调用之所以与其他调用不同,就在于它的特殊的调用位置。
我们知道,函数调用会在内存形成一个 “ 调用记录 ” ,又称 “ 调用帧 ” ( call frame ),保存调用位置和内部变量等信息。 如果在函数 A 的内部调用函数 B ,那么在 A 的调用帧上方,还会形成一个 B 的调用帧。 等到 B 运行结束,将结果返回到 A , B 的调用帧才会消失。 如果函数 B 内部还调用函数 C ,那就还有一个 C 的调用帧,以此类推。 所有的调用帧,就形成一个 “ 调用栈 ” ( call stack )。
尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧, 因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。
function f() {
let m = 1;
let n = 2;
return g(m + n);
}
f();
// 等同于
function f() {
return g(3);
}
f();
// 等同于
g(3);
上面代码中,如果函数 g 不是尾调用,函数 f 就需要保存内部变量 m 和 n 的值、 g 的调用位置等信息。 但由于调用 g 之后,函数 f 就结束了,所以执行到最后一步,完全可以删除 f(x) 的调用帧,只保留 g(3) 的调用帧。
这就叫做 “ 尾调用优化 ” ( Tail call optimization ),即只保留内层函数的调用帧。 如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是 “ 尾调用优化 ” 的意义。
注意,只有不再用到外层函数的内部变量,内层函数的调用帧才会取代外层函数的调用帧,否则就无法进行 “ 尾调用优化 ” 。
function addOne(a){
var one = 1;
function inner(b){
return b + one;
}
return inner(a);
}
上面的函数不会进行尾调用优化,因为内层函数inner用到了外层函数addOne的内部变量one。
函数调用自身,称为递归。如果尾调用自身,就称为尾递归。 递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生 “ 栈溢出 ” 错误( stack overflow )。 但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生 “ 栈溢出 ” 错误。
function factorial(n) {
if (n === 1) return 1;
return n * factorial(n - 1);
}
factorial(5) // 120
上面代码是一个阶乘函数,计算 n 的阶乘,最多需要保存 n 个调用记录,复杂度 O(n) 。
如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。
function factorial(n, total) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5, 1) // 120
还有一个比较著名的例子,就是计算 fibonacci(斐波那契) 数列,也能充分说明尾递归优化的重要性 如果是非尾递归的 fibonacci 递归方法
function Fibonacci (n) {
if ( n <= 1 ) {return 1};
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
Fibonacci(10); // 89
// Fibonacci(100)
// Fibonacci(500)
// 堆栈溢出了
如果我们使用尾递归优化过的 fibonacci 递归算法
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};
return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}
Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity
由此可见, “ 尾调用优化 ” 对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。 ES6 也是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署 “ 尾调用优化 ” 。这就是说,在 ES6 中,只要使用尾递归,就不会发生栈溢出,相对节省内存。
尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。 比如上面的例子,阶乘函数 factorial 需要用到一个中间变量 total ,那就把这个中间变量改写成函数的参数。 这样做的缺点就是不太直观,第一眼很难看出来,为什么计算 5 的阶乘,需要传入两个参数 5 和 1 ?
两个方法可以解决这个问题。 方法一是在尾递归函数之外,再提供一个正常形式的函数。
function tailFactorial(n, total) {
if (n === 1) return total;
return tailFactorial(n - 1, n * total);
}
function factorial(n) {
return tailFactorial(n, 1);
}
factorial(5) // 120
上面代码通过一个正常形式的阶乘函数 factorial ,调用尾递归函数 tailFactorial ,看起来就正常多了。
函数式编程有一个概念,叫做柯里化( currying ),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。
function currying(fn, n) {
return function (m) {
return fn.call(this, m, n);
};
}
function tailFactorial(n, total) {
if (n === 1) return total;
return tailFactorial(n - 1, n * total);
}
const factorial = currying(tailFactorial, 1);
factorial(5) // 120
上面代码通过柯里化,将尾递归函数 tailFactorial 变为只接受 1 个参数的 factorial 。
第二种方法就简单多了,就是采用 ES6 的函数默认值。
function factorial(n, total = 1) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5) // 120
上面代码中,参数 total 有默认值 1 ,所以调用时不用提供这个值。
总结一下,递归本质上是一种循环操作。纯粹的函数式编程语言没有循环操作命令,所有的循环都用递归实现,这就是为什么尾递归对这些语言极其重要。 对于其他支持 “ 尾调用优化 ” 的语言(比如 Lua , ES6 ),只需要知道循环可以用递归代替,而一旦使用递归,就最好使用尾递归。
ES6 的尾调用优化只在严格模式下开启,正常模式是无效的。
这是因为在正常模式下,函数内部有两个变量,可以跟踪函数的调用栈。
func.arguments:返回调用时函数的参数。
func.caller:返回调用当前函数的那个函数。
尾调用优化发生时,函数的调用栈会改写,因此上面两个变量就会失真。严格模式禁用这两个变量,所以尾调用模式仅在严格模式下生效。
function restricted() {
"use strict";
restricted.caller; // 报错
restricted.arguments; // 报错
}
restricted();
尾递归优化只在严格模式下生效,那么正常模式下,或者那些不支持该功能的环境中,有没有办法也使用尾递归优化呢?回答是可以的,就是自己实现尾递归优化。
它的原理非常简单。尾递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出。
怎么做可以减少调用栈呢?就是采用 “ 循环 ” 换掉 “ 递归 ” 。
下面是一个正常的递归函数。
function sum(x, y) {
if (y > 0) {
return sum(x + 1, y - 1);
} else {
return x;
}
}
sum(1, 100000)
// Uncaught RangeError: Maximum call stack size exceeded(…)
上面代码中,sum是一个递归函数,参数x是需要累加的值,参数y控制递归次数。 一旦指定sum递归 100000 次,就会报错,提示超出调用栈的最大次数。 蹦床函数(trampoline) 可以将递归执行转为循环执行。
function trampoline(f) {
while (f && f instanceof Function) {
f = f();
}
return f;
}
上面就是蹦床函数的一个实现,它接受一个函数f作为参数。只要f执行后返回一个函数,就继续执行。 注意,这里是返回一个函数,然后执行该函数,而不是函数里面调用函数,这样就避免了递归执行,从而就消除了调用栈过大的问题。
然后,要做的就是将原来的递归函数,改写为每一步返回另一个函数。
function sum(x, y) {
if (y > 0) {
return sum.bind(null, x + 1, y - 1);
} else {
return x;
}
}
上面代码中,sum函数的每次执行,都会返回自身的另一个版本。 现在,使用蹦床函数执行sum,就不会发生调用栈溢出。
trampoline(sum(1, 100000))
// 100001
//蹦床函数并不是真正的尾递归优化,下面的实现才是。
function tco(f) {
var value;
var active = false;
var accumulated = [];
return function accumulator() {
accumulated.push(arguments);
if (!active) {
active = true;
while (accumulated.length) {
value = f.apply(this, accumulated.shift());
}
active = false;
return value;
}
};
}
var sum = tco(function(x, y) {
if (y > 0) {
return sum(x + 1, y - 1)
}else {
return x
}
});
sum(1, 100000)
// 100001
上面代码中,tco函数是尾递归优化的实现,它的奥妙就在于状态变量active。 默认情况下,这个变量是不激活的。一旦进入尾递归优化的过程,这个变量就激活了。 然后,每一轮递归sum返回的都是undefined,所以就避免了递归执行; 而accumulated数组存放每一轮sum执行的参数,总是有值的,这就保证了accumulator函数内部的while循环总是会执行。 这样就很巧妙地将 “ 递归 ” 改成了 “ 循环 ” ,而后一轮的参数会取代前一轮的参数,保证了调用栈只有一层。