-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathmodel.py
190 lines (166 loc) · 7.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding:utf-8 -*-
'''
@Author: yanwii
@Date: 2018-10-30 15:28:04
'''
import copy
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
START_TAG = "START"
STOP_TAG = "STOP"
def log_sum_exp(vec):
max_score = torch.max(vec, 0)[0].unsqueeze(0)
max_score_broadcast = max_score.expand(vec.size(1), vec.size(1))
result = max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast), 0)).unsqueeze(0)
return result.squeeze(1)
class BiLSTMCRF(nn.Module):
def __init__(
self,
tag_map={"O":0, "B-COM":1, "I-COM":2, "E-COM":3, "START":4, "STOP":5},
batch_size=20,
vocab_size=20,
hidden_dim=128,
dropout=1.0,
embedding_dim=100
):
super(BiLSTMCRF, self).__init__()
self.batch_size = batch_size
self.hidden_dim = hidden_dim
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
self.dropout = dropout
self.tag_size = len(tag_map)
self.tag_map = tag_map
self.transitions = nn.Parameter(
torch.randn(self.tag_size, self.tag_size)
)
self.transitions.data[:, self.tag_map[START_TAG]] = -1000.
self.transitions.data[self.tag_map[STOP_TAG], :] = -1000.
self.word_embeddings = nn.Embedding(vocab_size, self.embedding_dim)
self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim // 2,
num_layers=1, bidirectional=True, batch_first=True, dropout=self.dropout)
self.hidden2tag = nn.Linear(self.hidden_dim, self.tag_size)
self.hidden = self.init_hidden()
def init_hidden(self):
return (torch.randn(2, self.batch_size, self.hidden_dim // 2),
torch.randn(2, self.batch_size, self.hidden_dim // 2))
def __get_lstm_features(self, sentence):
self.hidden = self.init_hidden()
length = sentence.shape[1]
embeddings = self.word_embeddings(sentence).view(self.batch_size, length, self.embedding_dim)
lstm_out, self.hidden = self.lstm(embeddings, self.hidden)
lstm_out = lstm_out.view(self.batch_size, -1, self.hidden_dim)
logits = self.hidden2tag(lstm_out)
return logits
def real_path_score_(self, feats, tags):
# Gives the score of a provided tag sequence
score = torch.zeros(1)
tags = torch.cat([torch.tensor([self.tag_map[START_TAG]], dtype=torch.long), tags])
for i, feat in enumerate(feats):
score = score + \
self.transitions[tags[i], tags[i+1]] + feat[tags[i + 1]]
score = score + self.transitions[tags[-1], self.tag_map[STOP_TAG]]
return score
def real_path_score(self, logits, label):
'''
caculate real path score
:params logits -> [len_sent * tag_size]
:params label -> [1 * len_sent]
Score = Emission_Score + Transition_Score
Emission_Score = logits(0, label[START]) + logits(1, label[1]) + ... + logits(n, label[STOP])
Transition_Score = Trans(label[START], label[1]) + Trans(label[1], label[2]) + ... + Trans(label[n-1], label[STOP])
'''
score = torch.zeros(1)
label = torch.cat([torch.tensor([self.tag_map[START_TAG]], dtype=torch.long), label])
for index, logit in enumerate(logits):
emission_score = logit[label[index + 1]]
transition_score = self.transitions[label[index], label[index + 1]]
score += emission_score + transition_score
score += self.transitions[label[-1], self.tag_map[STOP_TAG]]
return score
def total_score(self, logits, label):
"""
caculate total score
:params logits -> [len_sent * tag_size]
:params label -> [1 * tag_size]
SCORE = log(e^S1 + e^S2 + ... + e^SN)
"""
obs = []
previous = torch.full((1, self.tag_size), 0)
for index in range(len(logits)):
previous = previous.expand(self.tag_size, self.tag_size).t()
obs = logits[index].view(1, -1).expand(self.tag_size, self.tag_size)
scores = previous + obs + self.transitions
previous = log_sum_exp(scores)
previous = previous + self.transitions[:, self.tag_map[STOP_TAG]]
# caculate total_scores
total_scores = log_sum_exp(previous.t())[0]
return total_scores
def neg_log_likelihood(self, sentences, tags, length):
self.batch_size = sentences.size(0)
logits = self.__get_lstm_features(sentences)
real_path_score = torch.zeros(1)
total_score = torch.zeros(1)
for logit, tag, leng in zip(logits, tags, length):
logit = logit[:leng]
tag = tag[:leng]
real_path_score += self.real_path_score(logit, tag)
total_score += self.total_score(logit, tag)
# print("total score ", total_score)
# print("real score ", real_path_score)
return total_score - real_path_score
def forward(self, sentences, lengths=None):
"""
:params sentences sentences to predict
:params lengths represent the ture length of sentence, the default is sentences.size(-1)
"""
sentences = torch.tensor(sentences, dtype=torch.long)
if not lengths:
lengths = [i.size(-1) for i in sentences]
self.batch_size = sentences.size(0)
logits = self.__get_lstm_features(sentences)
scores = []
paths = []
for logit, leng in zip(logits, lengths):
logit = logit[:leng]
score, path = self.__viterbi_decode(logit)
scores.append(score)
paths.append(path)
return scores, paths
def __viterbi_decode(self, logits):
backpointers = []
trellis = torch.zeros(logits.size())
backpointers = torch.zeros(logits.size(), dtype=torch.long)
trellis[0] = logits[0]
for t in range(1, len(logits)):
v = trellis[t - 1].unsqueeze(1).expand_as(self.transitions) + self.transitions
trellis[t] = logits[t] + torch.max(v, 0)[0]
backpointers[t] = torch.max(v, 0)[1]
viterbi = [torch.max(trellis[-1], -1)[1].cpu().tolist()]
backpointers = backpointers.numpy()
for bp in reversed(backpointers[1:]):
viterbi.append(bp[viterbi[-1]])
viterbi.reverse()
viterbi_score = torch.max(trellis[-1], 0)[0].cpu().tolist()
return viterbi_score, viterbi
def __viterbi_decode_v1(self, logits):
init_prob = 1.0
trans_prob = self.transitions.t()
prev_prob = init_prob
path = []
for index, logit in enumerate(logits):
if index == 0:
obs_prob = logit * prev_prob
prev_prob = obs_prob
prev_score, max_path = torch.max(prev_prob, -1)
path.append(max_path.cpu().tolist())
continue
obs_prob = (prev_prob * trans_prob).t() * logit
max_prob, _ = torch.max(obs_prob, 1)
_, final_max_index = torch.max(max_prob, -1)
prev_prob = obs_prob[final_max_index]
prev_score, max_path = torch.max(prev_prob, -1)
path.append(max_path.cpu().tolist())
return prev_score.cpu().tolist(), path