-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathlangchain_qa.py
115 lines (102 loc) · 4.17 KB
/
langchain_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument('--file_path',required=True,type=str)
parser.add_argument('--embedding_path',required=True,type=str)
parser.add_argument('--model_path',required=True,type=str)
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--chain_type', default="refine", type=str)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
# os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION']='python'
file_path = args.file_path
embedding_path = args.embedding_path
model_path = args.model_path
import torch
from langchain import HuggingFacePipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import TextLoader
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
prompt_template = ("Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{context}\n{question}\n\n### Response: ")
refine_prompt_template = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n"
"这是原始问题: {question}\n"
"已有的回答: {existing_answer}\n"
"现在还有一些文字,(如果有需要)你可以根据它们完善现有的回答。"
"\n\n"
"{context_str}\n"
"\\nn"
"请根据新的文段,进一步完善你的回答。\n\n"
"### Response: "
)
initial_qa_template = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n"
"以下为背景知识:\n"
"{context_str}"
"\n"
"请根据以上背景知识, 回答这个问题:{question}。\n\n"
"### Response: "
)
if __name__ == '__main__':
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
loader = TextLoader(file_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=600, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
print("Loading the embedding model...")
embeddings = HuggingFaceEmbeddings(model_name=embedding_path)
docsearch = FAISS.from_documents(texts, embeddings)
print("loading LLM...")
model = HuggingFacePipeline.from_model_id(model_id=model_path,
task="text-generation",
model_kwargs={
"torch_dtype" : load_type,
"low_cpu_mem_usage" : True,
"temperature": 0.2,
"max_length": 1000,
"device_map": "auto",
"repetition_penalty":1.1}
)
if args.chain_type == "stuff":
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
qa = RetrievalQA.from_chain_type(
llm=model,
chain_type="stuff",
retriever=docsearch.as_retriever(search_kwargs={"k": 1}),
chain_type_kwargs=chain_type_kwargs)
elif args.chain_type == "refine":
refine_prompt = PromptTemplate(
input_variables=["question", "existing_answer", "context_str"],
template=refine_prompt_template,
)
initial_qa_prompt = PromptTemplate(
input_variables=["context_str", "question"],
template=initial_qa_template,
)
chain_type_kwargs = {"question_prompt": initial_qa_prompt, "refine_prompt": refine_prompt}
qa = RetrievalQA.from_chain_type(
llm=model, chain_type="refine",
retriever=docsearch.as_retriever(search_kwargs={"k": 1}),
chain_type_kwargs=chain_type_kwargs)
while True:
query = input("请输入问题:")
if len(query.strip())==0:
break
print(qa.run(query))